Stanford University
Showing 1-10 of 14 Results
-
Vinit B. Mahajan, MD, PhD
Professor of Ophthalmology
Current Research and Scholarly InterestsOur focus is the development of personalized medicine for eye diseases through translation of our discoveries in proteomics, genomics, and phenomics in humans, mice and tissue culture models.
-
Nicole M. Martinez
Assistant Professor of Chemical and Systems Biology and of Developmental Biology
Current Research and Scholarly InterestsThe Martinez lab studies RNA regulatory mechanisms that control gene expression. We focus on mRNA processing, RNA modifications and their roles in development and disease.
-
Michaëlle Ntala Mayalu
Assistant Professor of Mechanical Engineering and, by courtesy, of Bioengineering
BioDr. Michaëlle N. Mayalu is an Assistant Professor of Mechanical Engineering. She received her Ph.D., M.S., and B.S., degrees in Mechanical Engineering at the Massachusetts Institute of Technology. She was a postdoctoral scholar at the California Institute of Technology in the Computing and Mathematical Sciences Department. She was a 2017 California Alliance Postdoctoral Fellowship Program recipient and a 2019 Burroughs Wellcome Fund Postdoctoral Enrichment Program award recipient. She is also a 2023 Hypothesis Fund Grantee.
Dr. Michaëlle N. Mayalu's area of expertise is in mathematical modeling and control theory of synthetic biological and biomedical systems. She is interested in the development of control theoretic tools for understanding, controlling, and predicting biological function at the molecular, cellular, and organismal levels to optimize therapeutic intervention.
She is the director of the Mayalu Lab whose research objective is to investigate how to optimize biomedical therapeutic designs using theoretical and computational approaches coupled with experiments. Initial project concepts include: i) theoretical and experimental design of bacterial "microrobots" for preemptive and targeted therapeutic intervention, ii) system-level multi-scale modeling of gut associated skin disorders for virtual evaluation and optimization of therapy, iii) theoretical and experimental design of "microrobotic" swarms of engineered bacteria with sophisticated centralized and decentralized control schemes to explore possible mechanisms of pattern formation. The experimental projects in the Mayalu Lab utilize established techniques borrowed from the field of synthetic biology to develop synthetic genetic circuits in E. coli to make bacterial "microrobots". Ultimately the Mayalu Lab aims to develop accurate and efficient modeling frameworks that incorporate computation, dynamical systems, and control theory that will become more widespread and impactful in the design of electro-mechanical and biological therapeutic machines. -
Timothy Meyer
Stanford University Professor of Nephrology, Emeritus
Current Research and Scholarly InterestsInadequate removal of uremic solutes contributes to widespread illness in the more than 500,000 Americans maintained on dialysis. But we know remarkably little about these solutes. Dr. Meyer's research efforts are focused on identifying which uremic solutes are toxic, how these solutes are made, and how their production could be decreased or their removal could be increased. We should be able to improve treatment if we knew more about what we are trying to remove.