Stanford University


Showing 1-20 of 94 Results

  • Cholawat Pacharinsak, DVM, PhD

    Cholawat Pacharinsak, DVM, PhD

    Associate Professor of Comparative Medicine

    BioCholawat Pacharinsak, DVM, PhD Associate Professor and Director of Anesthesia, Pain Management, and Surgery, at Stanford University’s Department of Comparative Medicine; he is a Diplomate of the American College of Veterinary Anesthesia and Analgesia (DACVAA). He received his DVM from Chulalongkorn University, Thailand and trained in an Anesthesiology/Pain Management residency program and received his Master's degree at Washington State University. He completed his PhD in Comparative and Molecular Biosciences from the University of Minnesota. Prior to arriving at Stanford, Dr. Pacharinsak was a faculty member in Anesthesiology and Pain Management at Michigan State University and Purdue University; and served as a Clinical Specialist at UCLA’s David Geffen School of Medicine. His research focuses on understanding the neurobiology of cancer pain, chemotherapeutic-induced peripheral neuropathy, acute surgical pain models, and methods to improve clinical pain management e.g. sustained release analgesics supporting refinement. Research methodology includes electrophysiologic and behavioral techniques.

  • Julia Palacios

    Julia Palacios

    Associate Professor of Statistics, of Biomedical Data Science and, by courtesy, of Biology

    BioDr. Palacios seek to provide statistically rigorous answers to concrete, data driven questions in evolutionary genetics and public health . My research involves probabilistic modeling of evolutionary forces and the development of computationally tractable methods that are applicable to big data problems. Past and current research relies heavily on the theory of stochastic processes, Bayesian nonparametrics and recent developments in machine learning and statistical theory for big data.

  • Daniel Palanker, PhD

    Daniel Palanker, PhD

    Professor of Ophthalmology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsInteractions of electric field and light with biological cells and tissues and their applications to imaging, diagnostics, therapeutics and prosthetics, primarily in ophthalmology.
    Specific fields of interest:
    Electronic retinal prosthesis;
    Electronic enhancement of tear secretion;
    Electronic control of blood vessels;
    Non-damaging retinal laser therapy;
    Ultrafast laser surgery;
    Interferometric imaging of neural signals;
    Cell transplantation and retinal plasticity.

  • Megan J. Palmer

    Megan J. Palmer

    Adjunct Professor, Bioengineering

    BioDr. Megan J. Palmer is the Executive Director of Bio Policy & Leadership Initiatives at Stanford University. In this role, Dr. Palmer leads integrated research, teaching and engagement programs to explore how biological science and engineering is shaping our societies, and to guide innovation to serve public interests. Based in the Department of Bioengineering, where she is also an Adjunct Professor, she works closely both with groups across the university and with stakeholders in academia, government, industry and civil society around the world.

    In addition to fostering broader efforts, Dr. Palmer leads a focus area in biosecurity in partnership with the Freeman Spogli Institute for International Studies (FSI) at Stanford. Projects in this area examine how security is conceived and managed as biotechnology becomes increasingly accessible. Her current projects include assessing strategies for governing dual use research, analyzing the diffusion of safety and security norms and practices, and understanding the security implications of alternative technology design decisions.

    Dr. Palmer has created and led many programs aimed at developing and promoting best practices and policies for the responsible development of bioengineering. She currently co-chairs the World Economic Forum Global Future Council on Synthetic Biology and in a member of the Council of the Engineering Biology Research Consortium (EBRC). For the last ten years she has led programs in safety, security and social responsibility for the international Genetically Engineered Machine (iGEM) competition, which in 2019 involved over 6000 students in 353 teams from 48 countries. She also founded and serves as Executive Director of the Synthetic Biology Leadership Excellence Accelerator Program (LEAP), an international fellowship program in biotechnology leadership. She advises and works with many other organizations on their strategies for the responsible development of bioengineering, including serving on the board of directors of Revive & Restore, a nonprofit organization advancing biotechnologies for conservation.

    Previously, Megan was a Senior Research Scholar and William J. Perry Fellow in International Security at the Center for International Security and Cooperation (CISAC), part of FSI, where she is now an affiliated researcher. She also spent five years as Deputy Director of Policy and Practices for the multi-university NSF Synthetic Biology Engineering Research Center (Synberc). She has previously held positions as a project scientist at the California Center for Quantitative Bioscience at the University of California Berkeley (where she was an affiliate of Lawrence Berkeley National Labs), and a postdoctoral scholar in the Bioengineering Department at Stanford University. Dr. Palmer received her Ph.D. in Biological Engineering from M.I.T. and a B.Sc.E. in Engineering Chemistry from Queen’s University, Canada.

  • Theo Palmer

    Theo Palmer

    Professor of Neurosurgery, Emeritus

    Current Research and Scholarly InterestsMembers of the Palmer Lab study the biology of neural stem cells in brain development and in the adult. Our primary goal is to understand how genes and environment synergize in influencing stem cell behavior during development and how mild genetic or environmental risk factors for disease may synergize in their detrimental effects on brain development or in the risk of neuronal loss in age-related degenerative disease.

  • Stephen Palumbi

    Stephen Palumbi

    Jane and Marshall Steel Jr. Professor of Marine Sciences, Professor of Oceans and of Biology

    Current Research and Scholarly InterestsWe're interested in ecological, evolutionary, and conservation questions related to marine (and sometimes terrestrial) organisms and ecosystems. We use evolutionary genetics and molecular ecology techniques, and our fieldwork takes us all around the world. Currently, we're studying coral diversity, the adaptive potential of corals in response to climate change, the movement of organisms between marine reserves, genetic changes in abalone in response to environmental.

  • Jennifer Pan

    Jennifer Pan

    Sir Robert Ho Tung Professor of Chinese Studies, Professor of Communication, Senior Fellow at the Freeman Spogli Institute for International Studies and Professor, by courtesy, of Political Science and of Sociology

    BioJennifer Pan is a political scientist whose research focuses on political communication, digital media, and authoritarian politics. She is the Sir Robert Ho Tung Professor of Chinese Studies, Professor of Communication and (by courtesy) Political Science, and a Senior Fellow at the Freeman Spogli Institute.

    Dr. Pan's research uses experimental and computational methods with large-scale datasets on political activity to answer questions about the role of digital media in authoritarian and democratic politics, including how political censorship, propaganda, and information manipulation work in the digital age and how preferences and behaviors are shaped as a result. Her book, Welfare for Autocrats: How Social Assistance in China Cares for its Rulers (Oxford, 2020) shows how China's pursuit of political order transformed the country’s main social assistance program, Dibao. Her papers have appeared in peer reviewed publications such as the American Political Science Review, American Journal of Political Science, Journal of Politics, Political Communication, and Science.

    She graduated from Princeton University, summa cum laude, and received her Ph.D. from Harvard University’s Department of Government.

  • Alan C. Pao

    Alan C. Pao

    Associate Professor of Medicine (Nephrology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsWe are broadly interested in how the kidneys control salt, water, and electrolyte homeostasis in the body. Our disease focus is on kidney stone disease. We use cultured kidney cells, transgenic mice, human plasma/urine samples, and electronic health record data to study the pathogenesis of kidney stone disease. Our therapeutic focus is on the development of small molecule compounds that can be used for kidney stone prevention.

  • Peter Parham

    Peter Parham

    Professor of Structural Biology and, by courtesy, of Microbiology and Immunology

    Current Research and Scholarly InterestsThe Parham laboratory investigates the biology, genetics, and evolution of MHC class I molecules and NK cell receptors.

  • Victoria Parikh

    Victoria Parikh

    Assistant Professor of Medicine (Cardiovascular Medicine)

    BioDr. Parikh is a clinician scientist who cares for patients with and studies inherited (genetic) cardiovascular disease. She is the director of the Stanford Center for Inherited Cardiovascular Disease (SCICD) which is one of the largest of its kind in the country. SCICD integrates clinical and basic science with the expert care of patients with genetic cardiovascular conditions (e.g., cardiomyopathies, arrhythmias and vascular diseases). It provides cutting edge care for thousands of patients and families across the lifespan and integrates medical, surgical and genetics care. Our team includes physicians, nurses, advanced practice providers, genetic counselors, exercise physiologists and scientists.

    Dr. Parikh's own clinical practice and laboratory are focused on the genetics of cardiomyopathies and their associated arrhythmogenic substrates. She completed clinical cardiology fellowship at Stanford School of Medicine and her medical residency at the University of California, San Francisco. Funded by multiple research grants from the NIH, her lab seeks to identify novel mechanisms and therapeutic technologies for genetic cardiomyopathy as well as better understand the natural histories of patients affected by these diseases.

  • David Jaehyun Park

    David Jaehyun Park

    Clinical Instructor, Neurosurgery

    BioDavid Park, MD, PhD, is a neurosurgeon who graduated from medical school at the Catholic University of Korea in Seoul, South Korea. He then completed his internship and residency training in the Department of Neurosurgery at Seoul St. Mary’s Hospital. He became a board-certified neurosurgeon in South Korea in 2014 and subsequently completed a 2-year fellowship at the same hospital, specializing in brain tumor surgery and skull base surgery. During his residency, he also attended graduate school while practicing neurosurgery as a trainee and successfully defended his Ph.D. thesis, titled “Combination therapy for gliomas using temozolomide and interferon-beta secreting human bone marrow-derived mesenchymal stem cells,” in 2015.

    After completing his fellowship in South Korea, Dr. Park moved to Singapore in 2016 and worked as a Clinical Fellow (Clinical Associate) at the National Neuroscience Institute for one year, focusing on Neurosurgical Oncology and Skull Base Surgery.

    In 2017, Dr. Park joined Dr. Christian Badr’s lab at Massachusetts General Hospital, Harvard Medical School, as a Postdoctoral Research Fellow, conducting translational research on glioblastoma and studying the role of fatty acids and lipid metabolism in glioblastoma to complement his clinical expertise.

    During this time, Dr. Park also launched a startup based on his invention of an intraoperative diagnostic tool for tumor detection during glioma surgery. He collaborated with bioengineers at M.I.T. to develop a prototype and secured seed funding from the MIT Sandbox Innovation Fund Program. As an alumnus of the MIT Sandbox program, he continues to develop this project.

    In 2020, Dr. Park served as a Neurosurgical Oncology and Radiosurgery Fellow (Teaching Associate) for a year at North Shore University Hospital, Zucker School of Medicine at Hofstra/Northwell, in Long Island, New York, where he worked with Dr. Michael Schulder on brain tumor surgery including advanced techniques, such as Laser Interstitial Thermal Therapy (LITT) and Stereotactic Radiosurgery (SRS).

    From July 2021 to June 2022, he completed another fellowship in Neurosurgical Oncology and Radiosurgery at the Cleveland Clinic in Cleveland. He devoted his efforts to minimally invasive neurosurgical techniques such as LITT and Gamma Knife SRS, as well as awake brain tumor surgery under the guidance of Drs. Gene Barnett, Lilyana Angelov, and Ali Mohammadi.

    As of July 2022, Dr. Park has joined the Department of Neurosurgery at Stanford University as a Clinical Instructor, working with Dr. Steven D. Chang in the fields of Neurosurgical Oncology and CyberKnife SRS.

  • Jon Park, MD, FRCSC

    Jon Park, MD, FRCSC

    Saunders Family Professor

    Current Research and Scholarly InterestsNon-fusion dynamic spinal stabilization, artificial disc technologies, and regenerative spinal technologies.

  • Karen J. Parker, PhD

    Karen J. Parker, PhD

    Truong-Tan Broadcom Endowed Professor and Professor, by courtesy, of Comparative Medicine

    Current Research and Scholarly InterestsThe Parker Lab conducts research on the biology of social functioning in monkeys, typically developing humans, and patients with social impairments.

  • Vanessa Parli

    Vanessa Parli

    Director of Research Programs, Institute for Human-Centered Artificial Intelligence (HAI)

    BioVanessa Parli is the Director of Research at HAI. She leads the HAI grant programs, research convenings, student groups and “state of AI” reports such as the AI 100 and the AI Index where she is a member of the Steering Committee. Her team also analyzes the effectiveness of these programs to continuously improve HAI’s ability to foster interdisciplinary research collaborations internal and external to Stanford. Prior to Stanford, Vanessa worked in management consulting where she utilized statistics, machine learning and other data science methodologies to advise government agencies, large biotech companies and nonprofit organizations. Vanessa holds an MS in Engineering Management and Computational Mathematics from Johns Hopkins University and a BA in Industrial Engineering from Arizona State University.

  • Josef Parvizi, MD, PhD

    Josef Parvizi, MD, PhD

    Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    BioDr. Parvizi completed his medical internship at Mayo Clinic, neurology training at Harvard, and subspecialty training in clinical neurophysiology and epilepsy at UCLA before joining the Department of Neurology and Neurological Sciences at Stanford in 2007. Dr. Parvizi directs the Stanford Program for Medication Resistant Epilepsies and specializes in surgical treatments of intractable focal epilepsies. Dr. Parvizi is the principal investigator in the Laboratory of Behavioral and Cognitive Neuroscience, where he leads a team of investigators to study the human brain. http://med.stanford.edu/parvizi-lab.html.

  • Anca M. Pasca, MD

    Anca M. Pasca, MD

    Assistant Professor of Pediatrics

    Current Research and Scholarly InterestsThe research focus of the lab is to understand molecular mechanisms underlying neurodevelopmental disorders associated with premature birth, neonatal and fetal brain injury with the long-term goal of translating the lab’s findings into therapeutics. The research team employs a multidisciplinary approach involving genetics, molecular and developmental neurobiology, animal models and neural cells differentiated from patient-derived induced pluripotent stem (iPS) cells. In particular, the lab is using a powerful 3D human brain-region specific organoid system developed at Stanford (Nature Methods, 2015; Nature Protocols, 2018) to ask questions about brain injury during development.

    https://www.neopascalab.org/

  • Sergiu P. Pasca

    Sergiu P. Pasca

    Kenneth T. Norris, Jr. Professor of Psychiatry and Behavioral Sciences and Bonnie Uytengsu and Family Director of the Stanford Brain Organogenesis Program

    Current Research and Scholarly InterestsA critical challenge in understanding the intricate programs underlying development, assembly and dysfunction of the human brain is the lack of direct access to intact, functioning human brain tissue for detailed investigation by imaging, recording, and stimulation.
    To address this, we are developing bottom-up approaches to generate and assemble, from multi-cellular components, human neural circuits in vitro and in vivo.
    We introduced the use of instructive signals for deriving from human pluripotent stem cells self-organizing 3D cellular structures named brain region-specific spheroids/organoids. We demonstrated that these cultures, such as the ones resembling the cerebral cortex, can be reliably derived across many lines and experiments, contain synaptically connected neurons and non-reactive astrocytes, and can be used to gain mechanistic insights into genetic and environmental brain disorders. Moreover, when maintained as long-term cultures, they recapitulate an intrinsic program of maturation that progresses towards postnatal stages.
    We also pioneered a modular system to integrate 3D brain region-specific organoids and study human neuronal migration and neural circuit formation in functional preparations that we named assembloids. We have actively applied these models in combination with studies in long-term ex vivo brain preparations to acquire a deeper understanding of human physiology, evolution and disease mechanisms.
    We have carved a unique research program that combines rigorous in vivo and in vitro neuroscience, stem cell and molecular biology approaches to construct and deconstruct previously inaccessible stages of human brain development and function in health and disease.
    We believe science is a community effort, and accordingly, we have been advancing the field by broadly and openly sharing our technologies with numerous laboratories around the world and organizing the primary research conference and the training courses in the area of cellular models of the human brain.