Stanford University
Showing 41-60 of 114 Results
-
Matthias Garten
Assistant Professor of Microbiology and Immunology and of Bioengineering
Current Research and Scholarly InterestsWith a creative, collaborative, biophysical mindset, we aim to understand the ability non-model organisms to interface with environment to a point at which we can exploit the mechanisms finding cures against diseases and use the mechanisms as tools that we can use to engineer the environment. By developing approaches that allow a quantitative understanding and manipulation of molecular transport our research makes non-model organisms accessible to researchers and engineers.
Specifically, we are studying how the malaria parasite takes control over red blood cells. By learning the biophysical principles of transport in between the host and the parasite we can design ways to kill the parasite or exploit it to reengineer red blood cells. The transport we study is broadly encompassing everything from ions to lipids and proteins. We use variations of quantitative microscopy and electrophysiology to gain insight into the unique strategies the parasite evolved to survive. -
Jeffrey S. Glenn, M.D., Ph.D.
Joseph D. Grant Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsDr. Glenn's primary interest is in molecular virology, with a strong emphasis on translating this knowledge into novel antiviral therapies. Other interests include exploitation of hepatic stem cells, engineered human liver tissues, liver cancer, and new biodefense antiviral strategies.
-
Steven Higginbottom
Director of Gnotobiotics, Microbiology and Immunology
Current Role at StanfordMaintain and operate Gnotobiotic research facility.
-
Michael R. Howitt
Assistant Professor of Pathology and of Microbiology and Immunology
Current Research and Scholarly InterestsOur lab is broadly interested in how intestinal microbes shape our immune system to promote both health and disease. Recently we discovered that a type of intestinal epithelial cell, called tuft cells, act as sentinels stationed along the lining of the gut. Tuft cells respond to microbes, including parasites, to initiate type 2 immunity, remodel the epithelium, and alter gut physiology. Surprisingly, these changes to the intestine rely on the same chemosensory pathway found in oral taste cells. Currently, we aim to 1) elucidate the role of specific tuft cell receptors in microbial detection. 2) To understand how protozoa and bacteria within the microbiota impact host immunity. 3) Discover how tuft cells modulate surrounding cells and tissue.
-
KC Huang
LeRa Professor and Professor of Microbiology and Immunology
On Leave from 01/01/2026 To 03/31/2026Current Research and Scholarly InterestsHow do cells determine their shape and grow?
How do molecules inside cells get to the right place at the right time?
Our group tries to answer these questions using a systems biology approach, in which we integrate interacting networks of protein and lipids with the physical forces determined by the spatial geometry of the cell. We use theoretical and computational techniques to make predictions that we can verify experimentally using synthetic, chemical, or genetic perturbations. -
Peter K. Jackson
Professor of Microbiology and Immunology (Baxter Labs) and of Pathology
Current Research and Scholarly InterestsCell cycle and cyclin control of DNA replication .
-
Christine Jacobs-Wagner
Dennis Cunningham Professor, Professor of Biology and of Microbiology and Immunology
BioChristine Jacobs-Wagner is a Dennis Cunningham Professor in the Department of Biology and the ChEM-H Institute at Stanford University. She is interested in understanding the fundamental mechanisms and principles by which cells, and, in particular, bacterial cells, are able to multiple. She received her PhD in Biochemistry in 1996 from the University of Liège, Belgium where she unraveled a molecular mechanism by which some bacterial pathogens sense and respond to antibiotics attack to achieve resistance. For this work, she received multiple awards including the 1997 GE & Science Prize for Young Life Scientists. During her postdoctoral work at Stanford Medical School, she demonstrated that bacteria can localize regulatory proteins to specific intracellular regions to control signal transduction and the cell cycle, uncovering a new, unsuspected level of bacterial regulation.
She started her own lab at Yale University in 2001. Over the years, her group made major contributions in the emerging field of bacterial cell biology and provided key molecular insights into the temporal and spatial mechanisms involved in cell morphogenesis, cell polarization, chromosome segregation and cell cycle control. For her distinguished work, she received the Pew Scholars award from the Pew Charitable Trust, the Woman in Cell Biology Junior award from the American Society of Cell Biology and the Eli Lilly award from the American Society of Microbiology. She held the Maxine F. Singer and William H. Fleming professor chairs at Yale. She was elected to the Connecticut academy of Science, the American Academy of Microbiology and the National Academy of Sciences. She has been an investigator of the Howard Hughes Medical Institute since 2008.
Her lab moved to Stanford in 2019. Current research examines the general principles and spatiotemporal mechanisms by which bacterial cells replicate, using Caulobacter crescentus and Escherichia coli as models. Recently, the Jacobs-Wagner lab expanded their interests to the Lyme disease agent Borrelia burgdorferi, revealing unsuspected ways by which this pathogen grows and causes disease -
Prasanna Jagannathan
Associate Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology
Current Research and Scholarly InterestsWe study innate immunity and immune regulation of Plasmodium Falciparum malaria in children and pregnant women. Our work focuses on understanding how malaria shapes the immune state in individuals following repeated exposure. We are also testing novel interventions to enhance protective immunity against malaria in children via large, randomized controlled trials. Our work in malaria has been based in Eastern Uganda, where malaria transmission is among the highest in the world.
-
Samantha M Kerath
Director of Finance and Administration, Microbiology and Immunology
Current Role at StanfordDirector of Finance & Administration
Microbiology & Immunology and Baxter Lab -
Karla Kirkegaard
Violetta L. Horton Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsThe biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.