Stanford Advisors

All Publications

  • Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation. bioRxiv : the preprint server for biology Khatib, M., Zhao, E. T., Wei, S., Abramson, A., Bishop, E. S., Chen, C., Thomas, A., Xu, C., Park, J., Lee, Y., Hamnett, R., Yu, W., Root, S. E., Yuan, L., Chakhtoura, D., Kim, K. K., Zhong, D., Nishio, Y., Zhao, C., Wu, C., Jiang, Y., Zhang, A., Li, J., Wang, W., Salimi-Jazi, F., Rafeeqi, T. A., Hemed, N. M., Tok, J. B., Chen, X., Kaltschmidt, J. A., Dunn, J. C., Bao, Z. 2023


    Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics.

    View details for DOI 10.1101/2023.10.02.560482

    View details for PubMedID 37873341

  • Shear-aligned large-area organic semiconductor crystals through extended pi-pi interaction JOURNAL OF MATERIALS CHEMISTRY C Zhang, S., Talnack, F., Jousselin-Oba, T., Bhat, V., Wu, Y., Lei, Y., Tomo, Y., Gong, H., Michalek, L., Zhong, D., Wu, C., Yassar, A., Mannsfeld, S., Risko, C., Frigoli, M., Bao, Z. 2023

    View details for DOI 10.1039/d3tc01311a

    View details for Web of Science ID 001006838400001

  • Cost-Effective, Transfer-Free, Flexible Resistive Random Access Memory Using Laser-Scribed Reduced Graphene Oxide Patterning Technology NANO LETTERS Tian, H., Chen, H., Ren, T., Li, C., Xue, Q., Mohammad, M. A., Wu, C., Yang, Y., Wong, H. P. 2014; 14 (6): 3214-3219


    Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.

    View details for DOI 10.1021/nl5005916

    View details for Web of Science ID 000337337100037