
Carlos Castillo Passi
Postdoctoral Scholar, Radiological Sciences Laboratory
Bio
Carlos Castillo-Passi began his academic journey at Pontificia Universidad Catolica de Chile (PUC), where he earned both a degree and an MSc in Electrical Engineering in 2018. He then pursued a PhD in Biological and Medical Engineering through a joint program between PUC and King’s College London (KCL), completing it with maximum distinction in 2024. His research focused on the design of low-field cardiac MRI sequences using open-source MRI simulations. In 2023, his work on open-source MRI simulations was highlighted by the editor of Magnetic Resonance in Medicine (MRM). Furthermore, his application of this work to low-field cardiac MRI earned him the Early Career Award in Basic Science from the Society for Cardiovascular Magnetic Resonance (SCMR) in 2024. In addition to his research, Carlos is an active member of JuliaHealth, contributing to the development of high-performance, reproducible tools for health and medicine. In 2025, he joined Stanford University as a postdoctoral researcher, where he continues his work in cardiac MRI and open-source technologies.
Honors & Awards
-
Early Career Award - Basic Science, CMR2024 (2024)
-
Magna Cum Laude Merit Award (Top 15%), ISMRM Annual Meeting (2024)
-
Summa Cum Laude Merit Award (Top 5%), ISMRM Annual Meeting (2023)
-
Editor’s pick for July 2023, Magnetic Resonance in Medicine (2023)
All Publications
-
Highly efficient image navigator based 3D whole-heart cardiac MRA at 0.55T
MAGNETIC RESONANCE IN MEDICINE
2025; 93 (2): 689-698
Abstract
To develop and evaluate a highly efficient free-breathing and contrast-agent-free three-dimensional (3D) whole-heart Cardiac Magnetic Resonance Angiography (CMRA) sequence at 0.55T.Free-breathing whole-heart CMRA has been previously proposed at 1.5 and 3T. Direct application of this sequence to 0.55T is not possible due to changes in the magnetic properties of the tissues. To enable free-breathing CMRA at 0.55T, pulse sequence design and acquisition parameters of a previously proposed whole-heart CMRA framework are optimized via Bloch simulations. Image navigators (iNAVs) are used to enable nonrigid respiratory motion-correction and 100% respiratory scan efficiency. Patch-based low-rank denoising is employed to accelerate the scan and account for the reduced signal-to-noise ratio at 0.55T. The proposed approach was evaluated on 11 healthy subjects. Image quality was assessed by a clinical expert (1: poor to 5: excellent) for all intrapericardiac structures. Quantitative evaluation was performed by assessing the vessel sharpness of the proximal right coronary artery (RCA).Optimization resulted in an imaging flip angle of 11 0 ∘ $$ 11{0}^{\circ } $$ , fat saturation flip angle of 18 0 ∘ $$ 18{0}^{\circ } $$ , and six k-space lines for iNAV encoding. The relevant cardiac structures and main coronary arteries were visible in all subjects, with excellent image quality (mean 4 . 9 / 5 . 0 $$ 4.9/5.0 $$ ) and minimal artifacts (mean 4 . 9 / 5 . 0 $$ 4.9/5.0 $$ ), with RCA vessel sharpness ( 50 . 3 % ± 9 . 8 % $$ 50.3\%\pm 9.8\% $$ ) comparable to previous studies at 1.5T.The proposed approach enables 3D whole-heart CMRA at 0.55T in a 6-min scan ( 5 . 9 ± 0 . 7 min $$ 5.9\pm 0.7\;\min $$ ), providing excellent image quality, minimal artifacts, and comparable vessel sharpness to previous 1.5T studies. Future work will include the evaluation of the proposed approach in patients with cardiovascular disease.
View details for DOI 10.1002/mrm.30316
View details for Web of Science ID 001412668100017
View details for PubMedID 39415543
View details for PubMedCentralID PMC11604836