Bio


Dr. Chad Weldy is a cardiologist and a faculty member (Instructor) within the Division of Cardiovascular Medicine and the Stanford Center for Inherited Cardiovascular Disease. He received his M.D. from Duke University School of Medicine and completed his internal medicine internship, residency, and cardiology fellowship at Stanford University as a member of the Stanford Translational Investigator Program (TIP). As a research fellow, he conducted research within the lab of Dr. Thomas Quertermous focused on epigenetics, RNA editing, and genetic mechanisms of disease. Prior to entering medical school, he received his Ph.D. from the University of Washington and completed a postdoctoral fellowship with the University of Washington, Division of Cardiology where he conducted basic science research investigations within the fields of cardiovascular biology, redox biology, toxicology, and epigenetics. Dr. Weldy has a clinical expertise within the field of inherited cardiomyopathies where he treats patients and families within Stanford’s Center for Inherited Cardiovascular Disease (SCICD) where he trained under Dr. Euan Ashley. As a physician-scientist, Dr. Weldy works to better understand human genetics, epigenetics, and transcriptional regulation in cardiovascular disease. Dr. Weldy has received funding through an NIH/NHLBI K08 Clinical Scientist Research Career Development Award, an American Heart Association Career Development Award (CDA), an F32 Ruth L. Kirschstein National Research Service Award (NRSA) Individual Postdoctoral Fellowship award, and an NIH Loan Repayment Award on his work focused on the genetic, epigenetic, and RNA editing mechanisms of vascular disease. Within Stanford, Dr. Weldy has been the recipient of the Gerald Reaven Award for Basic Science from the Division of Cardiovascular Medicine, he has been inducted into AOA from the Stanford School of Medicine, and he was the recipient for the Timothy F. Beckett Jr. Award for Best Clinical Teaching from the Department of Medicine.

Clinical Focus


  • Inherited Cardiovascular Disease
  • Cardiovascular Genetics
  • Cardiovascular Disease

Academic Appointments


Honors & Awards


  • 2024 Louis N. and Arnold M. Katz Basic Science Research Prize — Finalist, American Heart Association, BCVS (August, 2024)
  • NIH/NHLBI K08 Mentored Clinical Scientist Development Award, NIH/NHLBI (August, 2023)
  • AHA Career Development Award (CDA), American Heart Association (March, 2023)
  • NIH Loan Repayment Program (LRP) Award, NIH/NHLBI (July, 2021)
  • Ruth L. Kirschstein National Research Service Award (NRSA) Individual Postdoctoral Fellowship (F32), NIH/NHLBI (July, 2021)
  • Gerald Reaven Award for Basic Science, Stanford University (June, 2021)
  • Timothy F. Beckett Jr. Award for Best Clinical Teaching by a Medicine Fellow, Stanford University (June, 2021)
  • AOA - Alpha Omega Alpha Medical Honor Society, Stanford University School of Medicine (6/2020)
  • 2019 Residency Research Travel Award, Stanford University Internal Medicine Residency Program (April, 2019)
  • 2014 Paper of the Year Award, Society of Toxicology, Inhalation and Respiratory Specialty Section (March 24, 2014)
  • 2014 Postdoctoral Travel Award, Society of Toxicology, Cardiovascular Toxicology Specialty Section (March 25, 2014)
  • 1st Place Postdoctoral Presentation Award, Pacific Northwest Association of Toxicologists (September 2013)
  • 2012 Innovations in Research Award, University of Washington Center for Ecogenetics and Environmental Health (CEEH) (May 2012)
  • Departmental nominee and one of four finalists, University of Washington Graduate School Medal (May 2011)
  • Young Investigator Award (YIA), Society for Free Radical Biology and Medicine (SFRBM) (November 2011)
  • 1st Place Student/Post Doc Oral Presentation Award, Pacific Northwest Association of Toxicologists (October 2010)
  • 2007 Professor Ming-Ho Yu Award: Outstanding Student in Environmental Toxicology, Huxley College of the Environment, Western Washington University (May 2007)

Professional Education


  • Board Certification: American Board of Internal Medicine, Cardiovascular Disease (2023)
  • Residency: Stanford University Internal Medicine Residency (2019) CA
  • Fellowship: Stanford University Cardiovascular Medicine Fellowship Program CA
  • Board Certification: American Board of Internal Medicine, Internal Medicine (2020)
  • Medical Education: Duke University School of Medicine (2017) NC
  • Cardiovascular Med Fellowship, Stanford University Hospitals, Cardiology (2023)
  • Internal Medicine Residency, Stanford University Hospitals, Internal Medicine (2019)
  • Internal Medicine Internship, Stanford University Hospitals, Internal Medicine (2018)
  • MD, Duke University School of Medicine, Medicine (2017)
  • Postdoctoral Fellowship, University of Washington, School of Medicine, Division of Cardiology, Cardiovascular Biology, Heart Failure, Epigenetics (2014)
  • PhD, University of Washington, School of Public Health, Toxicology, Vascular Physiology, Free Radical Biology (2012)
  • BS, Western Washington University, Huxley College of the Environment, Environmental Toxicology, Chemistry (2007)

Current Research and Scholarly Interests


As a physician-scientist in the lab of Dr. Quertermous I work to understand the genetic basis of cardiovascular disease and the transcriptional and epigenomic mechanisms of atherosclerosis. My work is focused across four main areas of cardiovascular genetics and mechanisms of coronary artery disease and smooth muscle biology:
1.Vascular smooth muscle specific ADAR1 mediated RNA editing of double stranded RNA and activation of the double stranded RNA receptor MDA5
2.Defining on single cell resolution the cellular and epigenomic features of human vascular disease across vascular beds of differing embryonic origin
3.CRISPRi screening with targeted perturb seq (TAPseq) to identify novel CAD genes in human coronary artery smooth muscle cells
4.Investigation of the epigenetic and molecular basis of coronary artery disease and smooth muscle cell transition in mice with conditional smooth muscle genetic deletion of CAD genes Pdgfd and Sox9

My work with Dr. Quertermous is focused on discovery of causal mechanisms of disease through leveraging human genetics with sophisticated molecular biology, single cell sequencing technologies, and mouse models of disease. This work attempts to apply multiple scientific research arms to ultimately lead to novel understandings of vascular disease and discover important new therapeutic approaches for drug discovery.

Grant funding received for this work:

Mentored Clinical Scientist Research Career Development Award (K08)(NIH/NHLBI, 1 K08 HL167699-01), Submitted June, 2022. PI: Weldy, Chad
•Title of proposal: “ADAR Mediated RNA editing is a causal mechanism in coronary artery disease”.
•Pending 08/01/2023 Start date
•$850,000 over 5 years

Career Development Award, American Heart Association (AHA CDA)(23CDA1042900), July, 2023 – June, 2026. PI: Weldy, Chad
•Title of proposal: “Linking RNA editing to coronary artery calcification and disease”
•Activation on 07/01/2023
•$231,000 over three years

NIH Loan Repayment Program (LRP) Award (NIH/NHLBI) Renewal Award, July, 2023. PI: Weldy, Chad
•Title of proposal: “RNA editing is a causal mechanism of coronary artery disease”

Ruth L. Kirschstein National Research Service Award (NRSA) Individual Postdoctoral Fellowship (F32) (NIH/NHLBI, 1 F32 HL160067-01), July, 2021. PI: Weldy, Chad
• Titled, “A transcriptional network which governs smooth muscle transition is mediated by causal coronary artery disease gene PDGFD”
•*Received perfect score with impact score 10, 1st percentile

NIH Loan Repayment Program (LRP) Award (NIH/NHLBI), July, 2021. PI: Weldy, Chad
•Title of proposal: "Single cell transcriptomic and epigenomic features of human atherosclerosis".
•This will award up to $100,000 towards student loans over the next 24 months with opportunity for renewal after 24 months.

All Publications


  • One-year real-world experience with mavacamten and its physiologic effects on obstructive hypertrophic cardiomyopathy FRONTIERS IN CARDIOVASCULAR MEDICINE Kim, D., Chu, E. L., Keamy-Minor, E. E., Paranjpe, I., Tang, W. L., O'Sullivan, J. W., Desai, Y. B., Liu, M. B., Munsey, E., Hecker, K., Cuenco, I., Kao, B., Bacolor, E., Bonnett, C., Linder, A., Lacar, K., Robles, N., Lamendola, C., Smith, A., Knowles, J. W., Perez, M. V., Kawana, M., Sallam, K. I., Weldy, C. S., Wheeler, M. T., Parikh, V. N., Salisbury, H., Ashley, E. A., Stanford Ctr Inherited Cardiovasc Dis 2024; 11
  • Smooth muscle expression of RNA editing enzyme ADAR1 controls vascular integrity and progression of atherosclerosis. bioRxiv : the preprint server for biology Weldy, C. S., Li, Q., Monteiro, J. P., Guo, H., Galls, D., Gu, W., Cheng, P. P., Ramste, M., Li, D., Palmisano, B. T., Sharma, D., Worssam, M. D., Zhao, Q., Bhate, A., Kundu, R. K., Nguyen, T., Li, J. B., Quertermous, T. 2024

    Abstract

    Mapping the genomic architecture of complex disease has been predicated on the understanding that genetic variants influence disease risk through modifying gene expression. However, recent discoveries have revealed that a significant burden of disease heritability in common autoinflammatory disorders and coronary artery disease is mediated through genetic variation modifying post-transcriptional modification of RNA through adenosine-to-inosine (A-to-I) RNA editing. This common RNA modification is catalyzed by ADAR enzymes, where ADAR1 edits specific immunogenic double stranded RNA (dsRNA) to prevent activation of the double strand RNA (dsRNA) sensor MDA5 ( IFIH1 ) and stimulation of an interferon stimulated gene (ISG) response. Multiple lines of human genetic data indicate impaired RNA editing and increased dsRNA sensing to be an important mechanism of coronary artery disease (CAD) risk. Here, we provide a crucial link between observations in human genetics and mechanistic cell biology leading to progression of CAD. Through analysis of human atherosclerotic plaque, we implicate the vascular smooth muscle cell (SMC) to have a unique requirement for RNA editing, and that ISG induction occurs in SMC phenotypic modulation, implicating MDA5 activation. Through culture of human coronary artery SMCs, generation of a conditional SMC specific Adar1 deletion mouse model on a pro-atherosclerosis background, and with incorporation of single cell RNA sequencing cellular profiling, we further show that Adar1 controls SMC phenotypic state, is required to maintain vascular integrity, and controls progression of atherosclerosis and vascular calcification. Through this work, we describe a fundamental mechanism of CAD, where cell type and context specific RNA editing and sensing of dsRNA mediates disease progression, bridging our understanding of human genetics and disease causality.

    View details for DOI 10.1101/2024.07.08.602569

    View details for PubMedID 39026721

    View details for PubMedCentralID PMC11257488

  • Genome-Wide Genetic Associations Prioritize Evaluation of Causal Mechanisms of Atherosclerotic Disease Risk. Arteriosclerosis, thrombosis, and vascular biology Quertermous, T., Li, D. Y., Weldy, C. S., Ramste, M., Sharma, D., Monteiro, J. P., Gu, W., Worssam, M. D., Palmisano, B. T., Park, C. Y., Cheng, P. 2024; 44 (2): 323-327

    Abstract

    The goal of this review is to discuss the implementation of genome-wide association studies to identify causal mechanisms of vascular disease risk.The history of genome-wide association studies is described, the use of imputation and the creation of consortia to conduct meta-analyses with sufficient power to arrive at consistent associated loci for vascular disease. Genomic methods are described that allow the identification of causal variants and causal genes and how they impact the disease process. The power of single-cell analyses to promote genome-wide association studies of causal gene function is described.Genome-wide association studies represent a paradigm shift in the study of cardiovascular disease, providing identification of genes, cellular phenotypes, and disease pathways that empower the future of targeted drug development.

    View details for DOI 10.1161/ATVBAHA.123.319480

    View details for PubMedID 38266112

  • Epistasis regulates genetic control of cardiac hypertrophy. medRxiv : the preprint server for health sciences Wang, Q., Tang, T. M., Youlton, N., Weldy, C. S., Kenney, A. M., Ronen, O., Hughes, J. W., Chin, E. T., Sutton, S. C., Agarwal, A., Li, X., Behr, M., Kumbier, K., Moravec, C. S., Tang, W. H., Margulies, K. B., Cappola, T. P., Butte, A. J., Arnaout, R., Brown, J. B., Priest, J. R., Parikh, V. N., Yu, B., Ashley, E. A. 2023

    Abstract

    The combinatorial effect of genetic variants is often assumed to be additive. Although genetic variation can clearly interact non-additively, methods to uncover epistatic relationships remain in their infancy. We develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy. We derive deep learning-based estimates of left ventricular mass from the cardiac MRI scans of 29,661 individuals enrolled in the UK Biobank. We report epistatic genetic variation including variants close to CCDC141, IGF1R, TTN, and TNKS. Several loci not prioritized by univariate genome-wide association analysis are identified. Functional genomic and integrative enrichment analyses reveal a complex gene regulatory network in which genes mapped from these loci share biological processes and myogenic regulatory factors. Through a network analysis of transcriptomic data from 313 explanted human hearts, we show that these interactions are preserved at the level of the cardiac transcriptome. We assess causality of epistatic effects via RNA silencing of gene-gene interactions in human induced pluripotent stem cell-derived cardiomyocytes. Finally, single-cell morphology analysis using a novel high-throughput microfluidic system shows that cardiomyocyte hypertrophy is non-additively modifiable by specific pairwise interactions between CCDC141 and both TTN and IGF1R. Our results expand the scope of genetic regulation of cardiac structure to epistasis.

    View details for DOI 10.1101/2023.11.06.23297858

    View details for PubMedID 37987017

    View details for PubMedCentralID PMC10659487

  • From Founder to Function: can we unravel phenotype from genotype? Heart rhythm Weldy, C. S., Perez, M. V. 2023

    View details for DOI 10.1016/j.hrthm.2023.08.030

    View details for PubMedID 37625473

  • Discovery of Transacting Long Noncoding RNAs That Regulate Smooth Muscle Cell Phenotype. Circulation research Shi, H., Nguyen, T., Zhao, Q., Cheng, P., Sharma, D., Kim, H. J., Brian Kim, J., Wirka, R., Weldy, C. S., Monteiro, J. P., Quertermous, T. 2023

    Abstract

    Smooth muscle cells (SMCs), the major cell type in atherosclerotic plaques, are vital in coronary artery diseases (CADs). Smooth muscle cell (SMC) phenotypic transition, which leads to the formation of various cell types in atherosclerotic plaques, is regulated by a network of genetic and epigenetic mechanisms and governs the risk of disease. The involvement of long noncoding RNAs (lncRNAs) has been increasingly identified in cardiovascular disease. However, SMC lncRNAs have not been comprehensively characterized, and their regulatory role in SMC state transition remains unknown.A discovery pipeline was constructed and applied to deeply strand-specific RNA sequencing from perturbed human coronary artery SMC with different disease-related stimuli, to allow for the detection of novel lncRNAs. The functional relevance of a select few novel lncRNAs were verified in vitro.We identified 4579 known and 13 655 de novo lncRNAs in human coronary artery SMC. Consistent with previous long noncoding RNA studies, these lncRNAs overall have fewer exons, are shorter in length than protein-coding genes (pcGenes), and have relatively low expression level. Genomic location of these long noncoding RNA is disproportionately enriched near CAD-related TFs (transcription factors), genetic loci, and gene regulators of SMC identity, suggesting the importance of their function in disease. Two de novo lncRNAs, ZEB-interacting suppressor (ZIPPOR) and TNS1-antisense (TNS1-AS2), were identified by our screen. Combining transcriptional data and in silico modeling along with in vitro validation, we identified CAD gene ZEB2 as a target through which these lncRNAs exert their function in SMC phenotypic transition.Expression of a large and diverse set of lncRNAs in human coronary artery SMC are highly dynamic in response to CAD-related stimuli. The dynamic changes in expression of these lncRNAs correspond to alterations in transcriptional programs that are relevant to CAD, suggesting a critical role for lncRNAs in SMC phenotypic transition and human atherosclerotic disease.

    View details for DOI 10.1161/CIRCRESAHA.122.321960

    View details for PubMedID 36852690

  • Molecular mechanisms of coronary artery disease risk at the PDGFD locus. Nature communications Kim, H., Cheng, P., Travisano, S., Weldy, C., Monteiro, J. P., Kundu, R., Nguyen, T., Sharma, D., Shi, H., Lin, Y., Liu, B., Haldar, S., Jackson, S., Quertermous, T. 2023; 14 (1): 847

    Abstract

    Genome wide association studies for coronary artery disease (CAD) have identified a risk locus at 11q22.3. Here, we verify with mechanistic studies that rs2019090 and PDGFD represent the functional variant and gene at this locus. Further, FOXC1/C2 transcription factor binding at rs2019090 is shown to promote PDGFD transcription through the CAD promoting allele. With single cell transcriptomic and histology studies with Pdgfd knockdown in an SMC lineage tracing male atherosclerosis mouse model we find that Pdgfd promotes expansion, migration, and transition of SMC lineage cells to the chondromyocyte phenotype. Pdgfd also increases adventitial fibroblast and pericyte expression of chemokines and leukocyte adhesion molecules, which is linked to plaque macrophage recruitment. Despite these changes there is no effect of Pdgfd deletion on overall plaque burden. These findings suggest that PDGFD mediates CAD risk by promoting deleterious phenotypic changes in SMC, along with an inflammatory response that is primarily focused in the adventitia.

    View details for DOI 10.1038/s41467-023-36518-9

    View details for PubMedID 36792607

  • miR Profile of Chronic Right Ventricular Pacing: a Pilot Study in Children with Congenital Complete Atrioventricular Block. Journal of cardiovascular translational research Navarre, B. M., Clouthier, K. L., Ji, X., Taylor, A., Weldy, C. S., Dubin, A. M., Reddy, S. 2022

    Abstract

    Chronic ventricular pacing can lead to pacing-induced cardiomyopathy (PICM). Clinical data alone is insufficient to predict who will develop PICM. Our study aimed to evaluate the circulating miR profile associated with chronic right ventricular pacing in children with congenital complete AV block (CCAVB) and to identify candidate miRs for longitudinal monitoring. Clinical data and blood were collected from chronically paced children (N = 9) and compared with non-paced controls (N = 13). miR microarrays from the buffy coat revealed 488 differentially regulated miRs between groups. Pathway analysis predicted both adaptive and maladaptive miR signaling associated with chronic pacing despite preserved ventricular function. Greater profibrotic signaling (miRs-92a, 130, 27, 29) and sodium and calcium channel dysregulation (let-7) were seen in those paced > 10 years with the most dyregulation seen in a patient with sudden death vs. those paced < 10 years. These miRs may help to identify early adverse remodeling in this population.

    View details for DOI 10.1007/s12265-022-10318-w

    View details for PubMedID 36121621

  • Dissecting the Genomics of Spontaneous Coronary Artery Dissection. Circulation. Genomic and precision medicine Weldy, C. S., Murtha, R., Kim, J. B. 2022: 101161CIRCGEN122003867

    View details for DOI 10.1161/CIRCGEN.122.003867

    View details for PubMedID 35980654

  • The epigenomic landscape of single vascular cells reflects developmental origin and identifies disease risk loci bioRxiv Weldy, C. S., Cheng, P. P., Pedroza, A. J., Dalal, A. R., Sharma, D., Kim, H., Shi, H., Nguyen, T., Kundu, R. K., Fischbein, M. P., Quertermous, T. 2022
  • Mulibrey Nanism and the Real Time Use of Genome and Biobank Engines to Inform Clinical Care in an Ultrarare Disease. Circulation. Genomic and precision medicine Weldy, C. S., Ashley, E. A. 2021: CIRCGEN121003430

    View details for DOI 10.1161/CIRCGEN.121.003430

    View details for PubMedID 34096331

  • Towards precision medicine in heart failure. Nature reviews. Cardiology Weldy, C. S., Ashley, E. A. 2021

    Abstract

    The number of therapies for heart failure (HF) with reduced ejection fraction has nearly doubled in the past decade. In addition, new therapies for HF caused by hypertrophic and infiltrative disease are emerging rapidly. Indeed, we are on the verge of a new era in HF in which insights into the biology of myocardial disease can be matched to an understanding of the genetic predisposition in an individual patient to inform precision approaches to therapy. In this Review, we summarize the biology of HF, emphasizing the causal relationships between genetic contributors and traditional structure-based remodelling outcomes, and highlight the mechanisms of action of traditional and novel therapeutics. We discuss the latest advances in our understanding of both the Mendelian genetics of cardiomyopathy and the complex genetics of the clinical syndrome presenting as HF. In the phenotypic domain, we discuss applications of machine learning for the subcategorization of HF in ways that might inform rational prescribing of medications. We aim to bridge the gap between the biology of the failing heart, its diverse clinical presentations and the range of medications that we can now use to treat it. We present a roadmap for the future of precision medicine in HF.

    View details for DOI 10.1038/s41569-021-00566-9

    View details for PubMedID 34108678

  • Circulating whole genome miRNA expression corresponds to progressive right ventricle enlargement and systolic dysfunction in adults with tetralogy of Fallot. PloS one Weldy, C. S., Syed, S. A., Amsallem, M., Hu, D., Ji, X., Punn, R., Taylor, A., Navarre, B., Reddy, S. 2020; 15 (11): e0241476

    Abstract

    INTRODUCTION: The adult congenital heart disease population with repaired tetralogy of Fallot (TOF) is subject to chronic volume and pressure loading leading to a 40% probability of right ventricular (RV) failure by the 3rd decade of life. We sought to identify a non-invasive signature of adverse RV remodeling using peripheral blood microRNA (miRNA) profiling to better understand the mechanisms of RV failure.METHODS: Demographic, clinical data, and blood samples were collected from adults with repaired TOF (N = 20). RNA was isolated from the buffy coat of peripheral blood and whole genome miRNA expression was profiled using Agilent's global miRNA microarray platform. Fold change, pathway analysis, and unbiased hierarchical clustering of miRNA expression was performed and correlated to RV size and function assessed by echocardiography performed at or near the time of blood collection.RESULTS: MiRNA expression was profiled in the following groups: 1. normal RV size (N = 4), 2. mild/moderate RV enlargement (N = 11) and 3. severe RV enlargement (N = 5). 267 miRNAs were downregulated, and 66 were upregulated across the three groups (fold change >2.0, FDR corrected p<0.05) as RV enlargement increased and systolic function decreased. qPCR validation of a subset of these miRNAs identified increasing expression of miRNA 28-3p, 433-3p, and 371b-3p to be associated with increasing RV size and decreasing RV systolic function. Unbiased hierarchical clustering of all patients based on miRNA expression demonstrates three distinct patient clusters that largely coincide with progressive RV enlargement. Pathway analysis of dysregulated miRNAs demonstrates up and downregulation of cell cycle pathways, extracellular matrix proteins and fatty acid synthesis. HIF 1alpha signaling was downregulated while p53 signaling was predicted to be upregulated.CONCLUSION: Adults with TOF have a distinct miRNA profile with progressive RV enlargement and dysfunction implicating cell cycle dysregulation and upregulation in extracellular matrix and fatty acid metabolism. These data suggest peripheral blood miRNA can provide insight into the mechanisms of RV failure and can potentially be used for monitoring disease progression and to develop RV specific therapeutics to prevent RV failure in TOF.

    View details for DOI 10.1371/journal.pone.0241476

    View details for PubMedID 33175850

  • In utero exposure to diesel exhaust particulates is associated with an altered cardiac transcriptional response to transverse aortic constriction and altered DNA methylation FASEB Journal Goodson, J. M., Weldy, C. S., MacDonald, J. W., Bammler, T. K., Chien, W., Chin, M. T. 2017: 4935-4945

    Abstract

    In utero exposure to diesel exhaust air pollution has been associated with increased adult susceptibility to heart failure in mice, but the mechanisms by which this exposure promotes susceptibility to heart failure are poorly understood. To identify the potential transcriptional effects that mediate this susceptibility, we have performed RNA sequencing analysis on adult hearts from mice that were exposed to diesel exhaust in utero and that have subsequently undergone transverse aortic constriction. We identified 3 target genes, Mir133a-2, Ptprf, and Pamr1, which demonstrate dysregulation after exposure and aortic constriction. Examination of expression patterns in human heart tissues indicates a correlation between expression and heart failure. We subsequently assessed DNA methylation modifications at these candidate loci in neonatal cultured cardiac myocytes after in utero exposure to diesel exhaust and found that the promoter for Mir133a-2 is differentially methylated. These target genes in the heart are the first genes to be identified that likely play an important role in mediating adult sensitivity to heart failure. We have also shown a change in DNA methylation within cardiomyocytes as a result of in utero exposure to diesel exhaust.-Goodson, J. M., Weldy, C. S., MacDonald, J. W., Liu, Y., Bammler, T. K., Chien, W.-M., Chin, M. T. In utero exposure to diesel exhaust particulates is associated with an altered cardiac transcriptional response to transverse aortic constriction and altered DNA methylation.

    View details for DOI 10.1096/fj.201700032R

    View details for PubMedCentralID PMC5636696

  • Neonatal Diesel Exhaust Particulate Exposure Does Not Predispose Mice to Adult Cardiac Hypertrophy or Heart Failure INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH Liu, Y., Weldy, C. S., Chin, M. T. 2016; 13 (12)

    Abstract

    Background: We have previously reported that in utero and early life exposure to diesel exhaust particulates predisposes mice to adult heart failure, and that in utero exposure alone is sufficient to confer this predisposition. This follow up study addresses whether neonatal exposure alone can also confer this predisposition. Methods: Newborn male C57BL/6 mice were exposed to diesel exhaust (DE) particulates immediately after birth until weaning at 21 days of age, whereupon they were transferred to filtered air (FA) conditions. At the age of 12 weeks, transverse aortic constriction (TAC) was performed followed by weekly echocardiography for three weeks. After the last echocardiogram, mice were euthanized for organ harvest, gravimetry and histology. Results: Neonatal exposure to DE particulates did not increase susceptibility to cardiac hypertrophy or heart failure after TAC when compared to FA exposed controls (ventricular weight/body weight ratio 7.505 vs. 7.517 mg/g, p = Not Significant (NS)). The left ventricular ejection fraction after TAC was similar between groups at one week, two weeks, and three weeks after procedure. Histological analysis showed no difference in the degree of cardiac hypertrophy or fibrosis. Conclusions: Neonatal exposure to DE particulates does not predispose mice to TAC-induced cardiac hypertrophy and heart failure in adulthood, in contrast to previously published results showing susceptibility due to in utero exposure.

    View details for DOI 10.3390/ijerph13121178

    View details for Web of Science ID 000389571900006

    View details for PubMedID 27886143

    View details for PubMedCentralID PMC5201319

  • Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias FASEB JOURNAL Hartman, M. E., Liu, Y., Zhu, W., Chien, W., Weldy, C. S., Fishman, G. I., Laflamme, M. A., Chin, M. T. 2014; 28 (7): 3007-3015

    Abstract

    CHF1/Hey2 is a Notch-responsive basic helix-loop-helix transcription factor involved in cardiac development. Common variants in Hey2 are associated with Brugada syndrome. We hypothesized that absence of CHF1/Hey2 would result in abnormal cellular electrical activity, altered cardiac conduction system (CCS) development, and increased arrhythmogenesis. We isolated neonatal CHF/Hey2-knockout (KO) cardiac myocytes and measured action potentials and ion channel subunit gene expression. We also crossed myocardial-specific CHF1/Hey2-KO mice with cardiac conduction system LacZ reporter mice and stained for conduction system tissue. We also performed ambulatory ECG monitoring for arrhythmias and heart rate variability. Neonatal cardiomyocytes from CHF1/Hey2-KO mice demonstrate a 50% reduction in action potential dV/dT, a 50-75% reduction in SCN5A, KCNJ2, and CACNA1C ion channel subunit gene expression, and an increase in delayed afterdepolarizations from 0/min to 12/min. CHF1/Hey2 cKO CCS-lacZ mice have a ∼3-fold increase in amount of CCS tissue. Ambulatory ECG monitoring showed no difference in cardiac conduction, arrhythmias, or heart rate variability. Wild-type cells or animals were used in all experiments. CHF1/Hey2 may contribute to Brugada syndrome by influencing the expression of SCN5A and formation of the cardiac conduction system, but its absence does not cause baseline conduction defects or arrhythmias in the adult mouse.-Hartman, M. E., Liu, Y., Zhu, W.-Z., Chien, W.-M., Weldy, C. S., Fishman, G. I., Laflamme, M. A., Chin, M. T. Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias.

    View details for DOI 10.1096/fj.14-251728

    View details for Web of Science ID 000337949400023

    View details for PubMedID 24687990

    View details for PubMedCentralID PMC4062830

  • In Utero Exposure to Diesel Exhaust Air Pollution Promotes Adverse Intrauterine Conditions, Resulting in Weight Gain, Altered Blood Pressure, and Increased Susceptibility to Heart Failure in Adult Mice PLOS ONE Weldy, C. S., Liu, Y., Liggitt, H. D., Chin, M. T. 2014; 9 (2)

    Abstract

    Exposure to fine particulate air pollution (PM₂.₅) is strongly associated with cardiovascular morbidity and mortality. Exposure to PM₂.₅ during pregnancy promotes reduced birthweight, and the associated adverse intrauterine conditions may also promote adult risk of cardiovascular disease. Here, we investigated the potential for in utero exposure to diesel exhaust (DE) air pollution, a major source of urban PM₂.₅, to promote adverse intrauterine conditions and influence adult susceptibility to disease. We exposed pregnant female C57Bl/6J mice to DE (≈300 µg/m³ PM₂.₅, 6 hrs/day, 5 days/week) from embryonic day (E) 0.5 to 17.5. At E17.5 embryos were collected for gravimetric analysis and assessed for evidence of resorption. Placental tissues underwent pathological examination to assess the extent of injury, inflammatory cell infiltration, and oxidative stress. In addition, some dams that were exposed to DE were allowed to give birth to pups and raise offspring in filtered air (FA) conditions. At 10-weeks of age, body weight and blood pressure were measured. At 12-weeks of age, cardiac function was assessed by echocardiography. Susceptibility to pressure overload-induced heart failure was then determined after transverse aortic constriction surgery. We found that in utero exposure to DE increases embryo resorption, and promotes placental hemorrhage, focal necrosis, compaction of labyrinth vascular spaces, inflammatory cell infiltration and oxidative stress. In addition, we observed that in utero DE exposure increased body weight, but counterintuitively reduced blood pressure without any changes in baseline cardiac function in adult male mice. Importantly, we observed these mice to have increased susceptibility to pressure-overload induced heart failure, suggesting this in utero exposure to DE 'reprograms' the heart to a heightened susceptibility to failure. These observations provide important data to suggest that developmental exposure to air pollution may strongly influence adult susceptibility to cardiovascular disease.

    View details for DOI 10.1371/journal.pone.0088582

    View details for Web of Science ID 000331262600075

    View details for PubMedID 24533117

    View details for PubMedCentralID PMC3922927

  • In utero and early life exposure to diesel exhaust air pollution increases adult susceptibility to heart failure in mice PARTICLE AND FIBRE TOXICOLOGY Weldy, C. S., Liu, Y., Chang, Y., Medvedev, I. O., Fox, J. R., Larson, T. V., Chien, W., Chin, M. T. 2013; 10

    Abstract

    Fine particulate air pollution (PM2.5) is a global health concern, as exposure to PM2.5 has consistently been found to be associated with increased cardiovascular morbidity and mortality. Although adult exposure to traffic related PM2.5, which is largely derived from diesel exhaust (DE), has been associated with increased cardiac hypertrophy, there are limited investigations into the potential effect of in utero and early life exposure on adult susceptibility to heart disease. In this study, we investigate the effect of in utero and early life exposure to DE on adult susceptibility to heart failure.Female C57BL/6 J mice were exposed to either filtered air (FA) or DE for 3 weeks (≈ 300 μg/m3 PM2.5 for 6 hours/day, 5 days/week) and then introduced to male breeders for timed matings. Female mice were exposed to either FA or DE throughout pregnancy and until offspring were 3 weeks of age. Offspring were then transferred to either FA or DE for an additional 8 weeks of exposure. At 12 weeks of age, male offspring underwent a baseline echocardiographic assessment, followed by a sham or transverse aortic constriction (TAC) surgery to induce pressure overload. Following sacrifice three weeks post surgery, ventricles were processed for histology to assess myocardial fibrosis and individual cardiomyocyte hypertrophy. mRNA from lung tissue was isolated to measure expression of inflammatory cytokines IL6 and TNFα.We observed that mice exposed to DE during in utero and early life development have significantly increased susceptibility to cardiac hypertrophy, systolic failure, myocardial fibrosis, and pulmonary congestion following TAC surgery compared to FA control, or adult DE exposed mice. In utero and early life DE exposure also strongly modified the inflammatory cytokine response in the adult lung.We conclude that exposure to diesel exhaust air pollution during in utero and early life development in mice increases adult susceptibility to heart failure. The results of this study may imply that the effects of air pollution on cardiovascular disease in human populations may be strongly mediated through a 'fetal origins' of adult disease pathway. Further investigations on this potential pathway of disease are warranted.

    View details for DOI 10.1186/1743-8977-10-59

    View details for Web of Science ID 000332342800001

    View details for PubMedID 24279743

    View details for PubMedCentralID PMC3902482

  • Inhalation of diesel exhaust does not exacerbate cardiac hypertrophy or heart failure in two mouse models of cardiac hypertrophy PARTICLE AND FIBRE TOXICOLOGY Liu, Y., Chien, W., Medvedev, I. O., Weldy, C. S., Luchtel, D. L., Rosenfeld, M. E., Chin, M. T. 2013; 10

    Abstract

    Strong associations have been observed between exposure to fine ambient particulate matter (PM2.5) and adverse cardiovascular outcomes. In particular, exposure to traffic related PM2.5 has been associated with increases in left ventricular hypertrophy, a strong risk factor for cardiovascular mortality. As much of traffic related PM2.5 is derived from diesel exhaust (DE), we investigated the effects of chronic DE exposure on cardiac hypertrophy and heart failure in the adult mouse by exposing mice to DE combined with either of two mouse models of cardiac hypertrophy: angiotensin II infusion or pressure overload induced by transverse aortic banding.Wild type male C57BL/6 J mice were either infused with angiotensin II (800 ng/kg/min) via osmotic minipump implanted subcutaneously for 1 month, or underwent transverse aortic banding (27 gauge needle 1 week for observing acute reactions, 26 gauge needle 3 months or 6 months for observing chronic reactions). Vehicle (saline) infusion or sham surgery was used as a control. Shortly after surgery, mice were transferred to our exposure facility and randomly assigned to either diesel exhaust (300 or 400 μg/m(3)) or filtered air exposures. After reaching the end of designated time points, echocardiography was performed to measure heart structure and function. Gravimetric analysis was used to measure the ventricular weight to body weight ratio. We also measured heart rate by telemetry using implanted ambulatory ECG monitors.Both angiotensin II and transverse aortic banding promoted cardiac hypertrophy compared to vehicle or sham controls. Transverse aortic banding for six months also promoted heart failure in addition to cardiac hypertrophy. In all cases, DE failed to exacerbate the development of hypertrophy or heart failure when compared to filtered air controls. Prolonged DE exposure also led to a decrease in average heart rate.Up to 6-months of DE exposure had no effect on cardiac hypertrophy and heart function induced by angiotensin II stimulation or pressure overload in adult C57BL/6 J mice. This study highlights the potential importance of particle constituents of ambient PM2.5 to elicit cardiotoxic effects. Further investigations on particle constituents and cardiotoxicity are warranted.

    View details for DOI 10.1186/1743-8977-10

    View details for Web of Science ID 000325635700001

    View details for PubMedID 24093778

    View details for PubMedCentralID PMC3851491

  • Glutathione (GSH) and the GSH synthesis gene Gclm modulate plasma redox and vascular responses to acute diesel exhaust inhalation in mice INHALATION TOXICOLOGY Weldy, C. S., Luttrell, I. P., White, C. C., Morgan-Stevenson, V., Cox, D. P., Carosino, C. M., Larson, T. V., Stewart, J. A., Kaufman, J. D., Kim, F., Chitaley, K., Kavanagh, T. J. 2013; 25 (8): 444-454

    Abstract

    Inhalation of fine particulate matter (PM₂.₅) is associated with acute pulmonary inflammation and impairments in cardiovascular function. In many regions, PM₂.₅ is largely derived from diesel exhaust (DE), and these pathophysiological effects may be due in part to oxidative stress resulting from DE inhalation. The antioxidant glutathione (GSH) is important in limiting oxidative stress-induced vascular dysfunction. The rate-limiting enzyme in GSH synthesis is glutamate cysteine ligase and polymorphisms in its catalytic and modifier subunits (GCLC and GCLM) have been shown to influence vascular function and risk of myocardial infarction in humans.We hypothesized that compromised de novo synthesis of GSH in Gclm⁻/⁺ mice would result in increased sensitivity to DE-induced lung inflammation and vascular effects.WT and Gclm⁻/⁺ mice were exposed to DE via inhalation (300 μg/m³) for 6 h. Neutrophil influx into the lungs, plasma GSH redox potential, vascular reactivity of aortic rings and aortic nitric oxide (NO•) were measured.DE inhalation resulted in mild bronchoalveolar neutrophil influx in both genotypes. DE-induced effects on plasma GSH oxidation and acetylcholine (ACh)-relaxation of aortic rings were only observed in Gclm⁻/⁺ mice. Contrary to our hypothesis, DE exposure enhanced ACh-induced relaxation of aortic rings in Gclm⁻/⁺ mice.THESE data support the hypothesis that genetic determinants of antioxidant capacity influence the biological effects of acute inhalation of DE. However, the acute effects of DE on the vasculature may be dependent on the location and types of vessels involved. Polymorphisms in GSH synthesis genes are common in humans and further investigations into these potential gene-environment interactions are warranted.

    View details for DOI 10.3109/08958378.2013.801004

    View details for Web of Science ID 000322067800004

    View details for PubMedID 23808636

    View details for PubMedCentralID PMC3831526

  • The Glutathione Synthesis Gene Gclm Modulates Amphiphilic Polymer-Coated CdSe/ZnS Quantum Dot-Induced Lung Inflammation in Mice PLOS ONE McConnachie, L. A., Botta, D., White, C. C., Weldy, C. S., Wilkerson, H., Yu, J., Dills, R., Yu, X., Griffith, W. C., Faustman, E. M., Farin, F. M., Gill, S. E., Parks, W. C., Hu, X., Gao, X., Eaton, D. L., Kavanagh, T. J. 2013; 8 (5)

    Abstract

    Quantum dots (QDs) are unique semi-conductor fluorescent nanoparticles with potential uses in a variety of biomedical applications. However, concerns exist regarding their potential toxicity, specifically their capacity to induce oxidative stress and inflammation. In this study we synthesized CdSe/ZnS core/shell QDs with a tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coating and assessed their effects on lung inflammation in mice. Previously published in vitro data demonstrated these TOPO-PMAT QDs cause oxidative stress resulting in increased expression of antioxidant proteins, including heme oxygenase, and the glutathione (GSH) synthesis enzyme glutamate cysteine ligase (GCL). We therefore investigated the effects of these QDs in vivo in mice deficient in GSH synthesis (Gclm +/- and Gclm -/- mice). When mice were exposed via nasal instillation to a TOPO-PMAT QD dose of 6 µg cadmium (Cd) equivalents/kg body weight, neutrophil counts in bronchoalveolar lavage fluid (BALF) increased in both Gclm wild-type (+/+) and Gclm heterozygous (+/-) mice, whereas Gclm null (-/-) mice exhibited no such increase. Levels of the pro-inflammatory cytokines KC and TNFα increased in BALF from Gclm +/+ and +/- mice, but not from Gclm -/- mice. Analysis of lung Cd levels suggested that QDs were cleared more readily from the lungs of Gclm -/- mice. There was no change in matrix metalloproteinase (MMP) activity in any of the mice. However, there was a decrease in whole lung myeloperoxidase (MPO) content in Gclm -/- mice, regardless of treatment, relative to untreated Gclm +/+ mice. We conclude that in mice TOPO-PMAT QDs have in vivo pro-inflammatory properties, and the inflammatory response is dependent on GSH synthesis status. Because there is a common polymorphism in humans that influences GCLM expression, these findings imply that humans with reduced GSH synthesis capabilities may be more susceptible to the pro-inflammatory effects of QDs.

    View details for DOI 10.1371/journal.pone.0064165

    View details for Web of Science ID 000319738100020

    View details for PubMedID 23724032

    View details for PubMedCentralID PMC3664581

  • Glutathione (GSH) and the GSH synthesis gene Gclm modulate vascular reactivity in mice FREE RADICAL BIOLOGY AND MEDICINE Weldy, C. S., Luttrell, I. P., White, C. C., Morgan-Stevenson, V., Bammler, T. K., Beyer, R. P., Afsharinejad, Z., Kim, F., Chitaley, K., Kavanagh, T. J. 2012; 53 (6): 1264-1278

    Abstract

    Oxidative stress has been implicated in the development of vascular disease and in the promotion of endothelial dysfunction via the reduction in bioavailable nitric oxide (NO()). Glutathione (GSH) is a tripeptide thiol antioxidant that is utilized by glutathione peroxidase (GPx) to scavenge reactive oxygen species such as hydrogen peroxide and phospholipid hydroperoxides. Relatively frequent single-nucleotide polymorphisms (SNPs) within the 5' promoters of the GSH synthesis genes GCLC and GCLM are associated with impaired vasomotor function, as measured by decreased acetylcholine-stimulated coronary artery dilation, and with increased risk of myocardial infarction. Although the influence of genetic knockdown of GPx on vascular function has been investigated in mice, no work to date has been published on the role of genetic knockdown of GSH synthesis genes on vascular reactivity. We therefore investigated the effects of targeted disruption of Gclm in mice and the subsequent depletion of GSH on vascular reactivity, NO() production, aortic nitrotyrosine protein modification, and whole-genome transcriptional responses as measured by DNA microarray. Gclm(-/+) and Gclm(-/-) mice had 72 and 12%, respectively, of wild-type (WT) aortic GSH content. Gclm(-/+) mice had a significant impairment in acetylcholine (ACh)-induced relaxation in aortic rings as well as increased aortic nitrotyrosine protein modification. Surprisingly, Gclm(-/-) aortas showed enhanced relaxation compared to Gclm(-/+) aortas, as well as increased NO() production. Although aortic rings from Gclm(-/-) mice had enhanced ACh relaxation, they had a significantly increased sensitivity to phenylephrine (PE)-induced contraction. Alternatively, the PE response of Gclm(-/+) aortas was nearly identical to that of their WT littermates. To examine the role of NO() or other potential endothelium-derived factors in differentially regulating vasomotor activity, we incubated aortic rings with the NO() synthase inhibitor L-NAME or physically removed the endothelium before PE treatment. L-NAME treatment and endothelium removal enhanced PE-induced contraction in WT and Gclm(-/+) mice, but this effect was severely diminished in Gclm(-/-) mice, indicating a potentially unique role for GSH in mediating vessel contraction. Whole-genome assessment of aortic mRNA in Gclm(-/-) and WT mice revealed altered expression of genes within the canonical Ca(2+) signaling pathway, which may have a role in mediating these observed functional effects. These findings provide additional evidence that the de novo synthesis of GSH can influence vascular reactivity and provide insights regarding possible mechanisms by which SNPs within GCLM and GCLC influence the risk of developing vascular diseases in humans.

    View details for DOI 10.1016/j.freeradbiomed.2012.07.006

    View details for Web of Science ID 000308903800006

    View details for PubMedID 22824862

    View details for PubMedCentralID PMC3625031

  • DIESEL particulate exposed macrophages alter endothelial cell expression of eNOS, iNOS, MCP1, and glutathione synthesis genes TOXICOLOGY IN VITRO Weldy, C. S., Wilkerson, H., Larson, T. V., Stewart, J. A., Kavanagh, T. J. 2011; 25 (8): 2064-2073

    Abstract

    There is considerable debate regarding inhaled diesel exhaust particulate (DEP) causing impairments in vascular reactivity. Although there is evidence that inhaled particles can translocate from the lung into the systemic circulation, it has been suggested that inflammatory factors produced in the lung following macrophage particle engulfment also pass into the circulation. To investigate these differing hypotheses, we used in vitro systems to model each exposure. By using a direct exposure system and a macrophage-endothelial cell co-culture model, we compared the effects of direct DEP exposure and exposure to inflammatory factors produced by DEP-treated macrophages, on endothelial cell mRNA levels for eNOS, iNOS, endothelin-1, and endothelin-converting-enzyme-1. As markers of oxidative stress, we measured the effects of DEP treatment on glutathione (GSH) synthesis genes and on total GSH. In addition, we analyzed the effect of DEP treatment on monocyte chemo-attractant protein-1. Direct DEP exposure increased endothelial GCLC and GCLM as well as total GSH in addition to increased eNOS, iNOS, and Mcp1 mRNA. Alternatively, inflammatory factors released from DEP-exposed macrophages markedly up-regulated endothelial iNOS and Mcp1 while modestly down-regulating eNOS. These data support both direct exposure to DEP and the release of inflammatory cytokines as explanations for DEP-induced impairments in vascular reactivity.

    View details for DOI 10.1016/j.tiv.2011.08.008

    View details for Web of Science ID 000298362500070

    View details for PubMedID 21920430

    View details for PubMedCentralID PMC3217165

  • Heterozygosity in the glutathione synthesis gene Gclm increases sensitivity to diesel exhaust particulate induced lung inflammation in mice INHALATION TOXICOLOGY Weldy, C. S., White, C. C., Wilkerson, H., Larson, T. V., Stewart, J. A., Gill, S. E., Parks, W. C., Kavanagh, T. J. 2011; 23 (12): 724-735

    Abstract

    Inhalation of ambient fine particulate matter (PM₂.₅) is associated with adverse respiratory and cardiovascular effects. A major fraction of PM₂.₅ in urban settings is diesel exhaust particulate (DEP), and DEP-induced lung inflammation is likely a critical event mediating many of its adverse health effects. Oxidative stress has been proposed to be an important factor in PM₂.₅-induced lung inflammation, and the balance between pro- and antioxidants is an important regulator of this inflammation. An important intracellular antioxidant is the tripeptide thiol glutathione (GSH). Glutamate cysteine ligase (GCL) carries out the first step in GSH synthesis. In humans, relatively common genetic polymorphisms in both the catalytic (Gclc) and modifier (Gclm) subunits of GCL have been associated with increased risk for lung and cardiovascular diseases.This study was aimed to determine the effects of Gclm expression on lung inflammation following DEP exposure in mice.We exposed Gclm wild type, heterozygous, and null mice to DEP via intranasal instillation and assessed lung inflammation as determined by neutrophils and inflammatory cytokines in lung lavage, inflammatory cytokine mRNA levels in lung tissue, as well as total lung GSH, Gclc, and Gclm protein levels.The Gclm heterozygosity was associated with a significant increase in DEP-induced lung inflammation when compared to that of wild type mice.This finding indicates that GSH synthesis can mediate DEP-induced lung inflammation and suggests that polymorphisms in Gclm may be an important factor in determining adverse health outcomes in humans following inhalation of PM₂.₅.

    View details for DOI 10.3109/08958378.2011.608095

    View details for Web of Science ID 000295478800004

    View details for PubMedID 21967497

    View details for PubMedCentralID PMC3337699