![Chandrayee Ghosh](https://profiles.stanford.edu/proxy/api/cap/profiles/194175/resources/profilephoto/350x350.1664555251481.jpg)
Chandrayee Ghosh
Basic Life Research Scientist, Surgery - General Surgery
Bio
Chandrayee Ghosh, PhD, is a Basic Life Research Scientist in the Department of Surgery at Stanford University School of Medicine and has been working in the field of Cancer and Immunology, with specific training and expertise in cancer therapeutics and translational science pertaining to drug repurposing and novel formulations of natural compounds. She has authored and coauthored 9 peer reviewed original articles in high impact journals. Her work has received media coverage both nationally and internationally. She presented her works in more than 18 international conferences and is recipient of research awards for her work. Her scientific contribution includes ground breaking findings such as identifying novel functions of FDA approved compounds and their combinations in targeting and assessing their mechanism of actions in one of the deadliest endocrine cancers anaplastic thyroid cancer, discovery of the interaction KDM3A with DCLK-1 and their role in pancreatic ductal adenocarcinoma tumorigenesis and stemness, identifying the cluster of master transcription factors or Super-Enhancers as novel targets for pancreatic cancer using novel formulation of natural compounds as anticancer agents.
Current Role at Stanford
Basic Life Research Scientist
Personal Interests
Avid Reader!
Professional Interests
My current primary research focus is on understanding the genetic/genomic changes involved tumor initiation and progression with the ultimate goal of identifying biomarkers of malignancy and therapeutic targets for endocrine cancers leading to novel drug development. I currently work on translational and clinical investigations with three main scientific goals: 1) to develop effective therapies for fatal, rare and neglected cancers, 2) to identify new methods, strategies and technologies for improving the diagnosis and treatment cancers, and 3) to develop methods for precision treatment tumors.
I have extensive research experience in cancer biology, cancer therapeutics in both basic and translational field and Immunology and infectious disease models. I have worked with novel compounds and also drug repurposing to identify new therapeutic regimes for pancreatic and endocrine cancers. I have substantial publication record which includes first author publication in reputed journals that includes Gastroenterology (IF-17) and Clinical Cancer Research (IF 10). I have completed my PhD in the field of Immunology and hence my long-term goal is to identify therapeutic propositions for aggressive diseases my implementing drug and immunotherapy.
All Publications
-
Anaplastic thyroid cancer spheroids as preclinical models to test therapeutics.
Journal of experimental & clinical cancer research : CR
2024; 43 (1): 85
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive thyroid cancer. Despite advances in tissue culture techniques, a robust model for ATC spheroid culture is yet to be developed. In this study, we created an efficient and cost-effective 3D tumor spheroids culture system from human ATC cells and existing cell lines that better mimic patient tumors and that can enhance our understanding of in vivo treatment response. We found that patient-derived ATC cells and cell lines can readily form spheroids in culture with a unique morphology, size, and cytoskeletal organization. We observed both cohesive (dense and solid structures) and discohesive (irregularly shaped structures) spheroids within the same culture condition across different cell lines. BRAFWT ATC spheroids grew in a cohesive pattern, while BRAFV600E-mutant ATC spheroids had a discohesive organization. In the patient-derived BRAFV600E-mutant ATC spheroids, we observed both growth patterns, but mostly the discohesive type. Histologically, ATC spheroids had a similar morphology to the patient's tumor through H&E staining and proliferation marker staining. Moreover, RNA sequencing analysis revealed that the gene expression profile of tumor cells derived from the spheroids closely matched parental patient tumor-derived cells in comparison to monolayer cultures. In addition, treatment response to combined BRAF and MEK inhibition in BRAFV600E-mutant ATC spheroids exhibited a similar sensitivity to the patient clinical response. Our study provides a robust and novel ex vivo spheroid model system that can be used in both established ATC cell lines and patient-derived tumor samples to better understand the biology of ATC and to test therapeutics.
View details for DOI 10.1186/s13046-024-03009-8
View details for PubMedID 38500204
-
Importance of targeting various cell signaling pathways in solid cancers.
International review of cell and molecular biology
2024; 385: 101-155
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
View details for DOI 10.1016/bs.ircmb.2024.02.002
View details for PubMedID 38663958
-
Advances in translational research of the rare cancer type adrenocortical carcinoma.
Nature reviews. Cancer
2023
Abstract
Adrenocortical carcinoma is a rare malignancy with an annual worldwide incidence of 1-2 cases per 1 million and a 5-year survival rate of <60%. Although adrenocortical carcinoma is rare, such rare cancers account for approximately one third of patients diagnosed with cancer annually. In the past decade, there have been considerable advances in understanding the molecular basis of adrenocortical carcinoma. The genetic events associated with adrenocortical carcinoma in adults are distinct from those of paediatric cases, which are often associated with germline or somatic TP53 mutations and have a better prognosis. In adult primary adrenocortical carcinoma, the main somatic genetic alterations occur in genes that encode proteins involved in the WNT-β-catenin pathway, cell cycle and p53 apoptosis pathway, chromatin remodelling and telomere maintenance pathway, cAMP-protein kinase A (PKA) pathway or DNA transcription and RNA translation pathways. Recently, integrated molecular studies of adrenocortical carcinomas, which have characterized somatic mutations and the methylome as well as gene and microRNA expression profiles, have led to a molecular classification of these tumours that can predict prognosis and have helped to identify new therapeutic targets. In this Review, we summarize these recent translational research advances in adrenocortical carcinoma, which it is hoped could lead to improved patient diagnosis, treatment and outcome.
View details for DOI 10.1038/s41568-023-00623-0
View details for PubMedID 37857840
View details for PubMedCentralID 8679848
-
Combination BRAFV600E inhibition with the multitargeting tyrosine kinase inhibitor axitinib shows additive anticancer activity in BRAFV600E-mutant anaplastic thyroid cancer.
Thyroid : official journal of the American Thyroid Association
2023
Abstract
Anaplastic thyroid cancer (ATC) is uniformly lethal. BRAFV600E mutation is present in up to 45% of patients with ATC. Targeted therapy with combined BRAF and MEK inhibition in BRAFV600E-mutant ATC can be effective, but acquired resistance is common because this combination targets the same pathway. Drug matrix screening, in BRAFV600E ATC cells, of highly active compounds in combination with BRAF inhibition showed multitargeting tyrosine kinase inhibitors (MTKIs) had the highest synergistic/additive activity. Thus, we hypothesized that the combination of BRAFV600E inhibition and an MTKI is more effective than a single drug or combined BRAF and MEK inhibition in BRAFV600E-mutant ATC. We evaluated the effect of BRAFV600E inhibitors in combination with the MTKI axitinib and its mechanism(s) of action.We evaluated the effects of BRAFV600E inhibitors and axitinib alone and in combination in in vitro and in vivo models of BRAFV600E-mutant and wildtype ATC.The combination of axitinib and BRAFV600E inhibitors (dabrafenib and PLX4720) showed an additive effect on inhibiting cell proliferation based on the Chou-Talalay algorithm in BRAFV600E-mutant ATC cell lines. This combination also significantly inhibited cell invasion and migration (P < 0.001) compared with the control. Dabrafenib and PLX4720 arrested ATC cells in the G0/G1 phase. Axitinib arrested ATC cells in the G2/M phase by decreasing phosphorylation of aurora kinase B (Thr232) and histone H3 (Ser10) proteins and by upregulating the c-JUN signaling pathway. The combination of BRAF inhibition and axitinib significantly inhibited tumor growth and was associated with improved survival in an orthotopic ATC model.The novel combination of axitinib and BRAFV600E inhibition enhanced anticancer activity in in vitro and in vivo models of BRAFV600E-mutant ATC. This combination may have clinical utility in BRAFV600E-mutant ATC that is refractory to current standard therapy, namely combined BRAF and MEK inhibition.
View details for DOI 10.1089/thy.2023.0201
View details for PubMedID 37675898
-
Probability of positive genetic testing in patients diagnosed with pheochromocytoma and paraganglioma: Criteria beyond a family history.
Surgery
2020
Abstract
BACKGROUND: Genetic testing for germline pheochromocytoma and paraganglioma susceptibility genes is associated with improved patient management. However, data are currently sparse on the probability of a positive testing result based on an individual's clinical presentation. This study evaluates clinical characteristics for association with testing positive for known pheochromocytoma and paraganglioma susceptibility genes.METHODS: This retrospective analysis examined 111 patients with a diagnosis of pheochromocytoma and paraganglioma who underwent genetic testing. Logistic regression and receiver operating characteristic analyses were performed to identify factors associated with a positive genetic testing result. Probabilities were then calculated for combinations of significant factors to determine the likelihood of a positive test result in each group.RESULTS: Of 32 patients with a family history of pheochromocytoma and paraganglioma, 31 (97%) had a germline mutation detected. Of 79 patients without a family history, 24 (30%) had a pathogenic germline mutation detected. In multivariate analysis, a positive family history, aged ≤47 years, and tumor size ≤2.9 cm were independent factors associated with a positive genetic testing result. Patients meeting all 3 criteria had a 100% probability compared with 13% in those without any of the criteria. In addition to a positive family history, having either aged ≤47 years or tumor size ≤2.9 cm resulted in a 90% and 100% probability of a positive result, respectively. In the absence of a family history, the probability in patients who were aged ≤47 years and had a tumor size ≤2.9 cm was 60%.CONCLUSION: In addition to a family history of pheochromocytoma and paraganglioma, aged ≤47 years, and tumor size ≤2.9 cm are associated with a higher probability of testing positive for a pheochromocytoma and paraganglioma susceptibility gene mutation. Patients meeting all 3 criteria have a 100% probability of a positive genetic testing result.
View details for DOI 10.1016/j.surg.2020.08.027
View details for PubMedID 33023754
-
Diphenylbutylpiperidine Antipsychotic Drugs Inhibit Prolactin Receptor Signaling to Reduce Growth of Pancreatic Ductal Adenocarcinoma in Mice.
Gastroenterology
2020; 158 (5): 1433-1449.e27
Abstract
Prolactin (PRL) signaling is up-regulated in hormone-responsive cancers. The PRL receptor (PRLR) is a class I cytokine receptor that signals via the Janus kinase (JAK)-signal transducer and activator of transcription and mitogen-activated protein kinase pathways to regulate cell proliferation, migration, stem cell features, and apoptosis. Patients with pancreatic ductal adenocarcinoma (PDAC) have high plasma levels of PRL. We investigated whether PRLR signaling contributes to the growth of pancreatic tumors in mice.We used immunohistochemical analyses to compare levels of PRL and PRLR in multitumor tissue microarrays. We used structure-based virtual screening and fragment-based drug discovery to identify compounds likely to bind PRLR and interfere with its signaling. Human pancreatic cell lines (AsPC-1, BxPC-3, Panc-1, and MiaPaCa-2), with or without knockdown of PRLR (clustered regularly interspaced short palindromic repeats or small hairpin RNA), were incubated with PRL or penfluridol and analyzed in proliferation and spheroid formation. C57BL/6 mice were given injections of UNKC-6141 cells, with or without knockdown of PRLR, into pancreas, and tumor development was monitored for 4 weeks, with some mice receiving penfluridol treatment for 21 days. Human pancreatic tumor tissues were implanted into interscapular fat pads of NSG mice, and mice were given injections of penfluridol daily for 28 days. Nude mice were given injections of Panc-1 cells, xenograft tumors were grown for 2 weeks, and mice were then given intraperitoneal penfluridol for 35 days. Tumors were collected from mice and analyzed by histology, immunohistochemistry, and immunoblots.Levels of PRLR were increased in PDAC compared with nontumor pancreatic tissues. Incubation of pancreatic cell lines with PRL activated signaling via JAK2-signal transducer and activator of transcription 3 and extracellular signal-regulated kinase, as well as formation of pancospheres and cell migration; these activities were not observed in cells with PRLR knockdown. Pancreatic cancer cells with PRLR knockdown formed significantly smaller tumors in mice. We identified several diphenylbutylpiperidine-class antipsychotic drugs as agents that decreased PRL-induced JAK2 signaling; incubation of pancreatic cancer cells with these compounds reduced their proliferation and formation of panco spheres. Injections of 1 of these compounds, penfluridol, slowed the growth of xenograft tumors in the different mouse models, reducing proliferation and inducing autophagy of the tumor cells.Levels of PRLR are increased in PDAC, and exposure to PRL increases proliferation and migration of pancreatic cancer cells. Antipsychotic drugs, such as penfluridol, block PRL signaling in pancreatic cancer cells to reduce their proliferation, induce autophagy, and slow the growth of xenograft tumors in mice. These drugs might be tested in patients with PDAC.
View details for DOI 10.1053/j.gastro.2019.11.279
View details for PubMedID 31786131
View details for PubMedCentralID PMC7103550
-
A combinatorial strategy for targeting BRAF V600E mutant cancers with BRAF V600E inhibitor (PLX4720) and tyrosine kinase inhibitor (ponatinib).
Clinical cancer research : an official journal of the American Association for Cancer Research
2020
Abstract
PURPOSE: Most aggressive thyroid cancers are commonly associated with a BRAF V600E mutation. Preclinical and clinical data in BRAF V600E cancers suggest that combined BRAF and MEK inhibitor treatment result in a response, but resistance is common. One mechanism of acquired resistance is through persistent activation of tyrosine kinase (TK) signaling by alternate pathways. We hypothesized that combination therapy with BRAF and multitargeting TK inhibitors (MTKI) might be more effective in BRAF V600E thyroid cancer than single agent or BRAF and MEK inhibitors.EXPERIMENTAL DESIGN: The combined drug activity was analyzed to predict any synergistic effect using high throughput screening (HTS) of active drugs. We performed follow up in vitro and in vivo studies to validate and determine the mechanism of action of synergistic drugs.RESULTS: The MTKI ponatinib and the BRAF inhibitor PLX4720 showed synergistic activity by HTS. This combination significantly inhibited proliferation, colony formation, invasion and migration in BRAF V600E thyroid cancer cell lines and downregulated pERK/MEK and c-JUN signaling pathways, and increased apoptosis. PLX4720 resistant BRAF V600E cells became sensitized to the combination treatment, with decreased proliferation at lower PLX4720 concentrations. In orthotopic thyroid cancer mouse model, combination therapy significantly reduced tumor growth (p < 0.05), lower number of metastases (p < 0.05) and longer survival (p < 0.05) compared to monotherapy and vehicle control.CONCLUSIONS: Combination treatment with ponatinib and PLX4720 exhibited significant synergistic anticancer activity in preclinical models of BRAF V600E thyroid cancer, in addition to overcoming PLX4720 resistance. Our results suggest this combination should be tested in clinical trials.
View details for DOI 10.1158/1078-0432.CCR-19-1606
View details for PubMedID 31937621
-
Adrenal Vein Sampling to Distinguish Between Unilateral and Bilateral Primary Hyperaldosteronism: To ACTH Stimulate or Not?
Journal of clinical medicine
2020; 9 (5)
Abstract
The aim of this study is to determine the accuracy of adrenal vein sampling (AVS) with and without adrenocorticotropic hormone (ACTH) stimulation to distinguish between unilateral and bilateral primary hyperaldosteronism (PA). Retrospective analysis of a prospective database from a referral center between 1984 and 2009, 76 patients had simultaneous cannulation of bilateral adrenal veins and AVS with and without ACTH stimulation. All patients had adrenalectomies. The selectivity index (SI, cut-off value ≥2) was used for confirmation of successful cannulation of the adrenal vein. The lateralization index (LI, cut-off value >2 and >4) was used for distinguishing between unilateral and bilateral PA. The SI ratio was higher with ACTH stimulation compared to without for the right adrenal vein (p = 0.027). The LI >2 ratio was higher with ACTH stimulation compared to without (p = 0.007). For the LI >4 ratio, there was no difference between with and without ACTH stimulation (p = 0.239). However, for a LI >4, 7 patients (9.2%) were not lateralized with ACTH stimulation, but they did lateralize without ACTH stimulation. AVS with ACTH stimulation is associated with a higher SI ratio compared to AVS without ACTH stimulation. However, when using LI >4 for AVS, samples without ACTH stimulation should also be included to detect a subset of patients with unilateral disease that are not detected with ACTH stimulation.
View details for DOI 10.3390/jcm9051447
View details for PubMedID 32413990
-
The Histone Demethylase KDM3A, Increased in Human Pancreatic Tumors, Regulates Expression of DCLK1 and Promotes Tumorigenesis in Mice.
Gastroenterology
2019; 157 (6): 1646-1659.e11
Abstract
The histone lysine demethylase 3A (KDM3A) demethylates H3K9me1 and H3K9Me2 to increase gene transcription and is upregulated in tumors, including pancreatic tumors. We investigated its activities in pancreatic cancer cell lines and its regulation of the gene encoding doublecortin calmodulin-like kinase 1 (DCLK1), a marker of cancer stem cells.We knocked down KDM3A in MiaPaCa-2 and S2-007 pancreatic cancer cell lines and overexpressed KDM3A in HPNE cells (human noncancerous pancreatic ductal cell line); we evaluated cell migration, invasion, and spheroid formation under hypoxic and normoxic conditions. Nude mice were given orthotopic injections of S2-007 cells, with or without (control) knockdown of KDM3A, and HPNE cells, with or without (control) overexpression of KDM3A; tumor growth was assessed. We analyzed pancreatic tumor tissues from mice and pancreatic cancer cell lines by immunohistochemistry and immunoblotting. We performed RNA-sequencing analysis of MiaPaCa-2 and S2-007 cells with knockdown of KDM3A and evaluated localization of DCLK1 and KDM3A by immunofluorescence. We analyzed the cancer genome atlas for levels of KDM3A and DCLK1 messenger RNA in human pancreatic ductal adenocarcinoma (PDAC) tissues and association with patient survival time.Levels of KDM3A were increased in human pancreatic tumor tissues and cell lines, compared with adjacent nontumor pancreatic tissues, such as islet and acinar cells. Knockdown of KDM3A in S2-007 cells significantly reduced colony formation, invasion, migration, and spheroid formation, compared with control cells, and slowed growth of orthotopic tumors in mice. We identified KDM3A-binding sites in the DCLK1 promoter; S2-007 cells with knockdown of KDM3A had reduced levels of DCLK1. HPNE cells that overexpressed KDM3A formed foci and spheres in culture and formed tumors and metastases in mice, whereas control HPNE cells did not. Hypoxia induced sphere formation and increased levels of KDM3A in S2-007 cells and in HPNE cells that overexpressed DCLK1, but not control HPNE cells. Levels of KDM3A and DCLK1 messenger RNA were higher in human PDAC than nontumor pancreatic tissues and correlated with shorter survival times of patients.We found human PDAC samples and pancreatic cancer cell lines to overexpress KDM3A. KDM3A increases expression of DCLK1, and levels of both proteins are increased in human PDAC samples. Knockdown of KDM3A in pancreatic cancer cell lines reduced their invasive and sphere-forming activities in culture and formation of orthotopic tumors in mice. Hypoxia increased expression of KDM3A in pancreatic cancer cells. Strategies to disrupt this pathway might be developed for treatment of pancreatic cancer.
View details for DOI 10.1053/j.gastro.2019.08.018
View details for PubMedID 31442435
View details for PubMedCentralID PMC6878178
-
Super-enhancers: novel target for pancreatic ductal adenocarcinoma.
Oncotarget
2019; 10 (16): 1554-1571
Abstract
Super-enhancers (SEs) are unique areas of the genome which drive high-level of transcription and play a pivotal role in the cell physiology. Previous studies have established several important genes in cancer as SE-driven oncogenes. It is likely that oncogenes may hack the resident tissue regenerative program and interfere with SE-driven repair networks, leading to the specific pancreatic ductal adenocarcinoma (PDAC) phenotype. Here, we used ChIP-Seq to identify the presence of SE in PDAC cell lines. Differential H3K27AC marks were identified at enhancer regions of genes including c-MYC, MED1, OCT-4, NANOG, and SOX2 that can act as SE in non-cancerous, cancerous and metastatic PDAC cell lines. GZ17-6.02 affects acetylation of the genes, reduces transcription of major transcription factors, sonic hedgehog pathway proteins, and stem cell markers. In accordance with the decrease in Oct-4 expression, ChIP-Seq revealed a significant decrease in the occupancy of OCT-4 in the entire genome after GZ17-6.02 treatment suggesting the possible inhibitory effect of GZ17-6.02 on PDAC. Hence, SE genes are associated with PDAC and targeting their regulation with GZ17-6.02 offers a novel approach for treatment.
View details for DOI 10.18632/oncotarget.26704
View details for PubMedID 30899425
View details for PubMedCentralID PMC6422180