Charles Hugh Brown IV
Professor of Anesthesiology, Perioperative and Pain Medicine (Cardiac)
Clinical Focus
- Anesthesiology
Academic Appointments
-
Professor - University Medical Line, Anesthesiology, Perioperative and Pain Medicine
Professional Education
-
Board Certification: National Board of Echocardiography, Advanced Perioperative Transesophageal Echocardiography (2022)
-
Board Certification: American Board of Anesthesiology, Anesthesiology (2011)
-
Fellowship: Johns Hopkins Hospital Adult Cardiothoracic Anesthesiology Fellowship (2011) MD
-
Residency: Johns Hopkins Anesthesiology Residency (2010) MD
-
Residency: Johns Hopkins Dept of Emergency Medicine Residency Program (2007) MD
-
Medical Education: Johns Hopkins University School of Medicine (2005) MD
All Publications
-
Continuous Monitoring of Cerebral Autoregulation in Adults Supported by Extracorporeal Membrane Oxygenation.
Neurocritical care
2024
Abstract
Impaired cerebral autoregulation (CA) is one of several proposed mechanisms of acute brain injury in patients supported by extracorporeal membrane oxygenation (ECMO). The primary aim of this study was to determine the feasibility of continuous CA monitoring in adult ECMO patients. Our secondary aims were to describe changes in cerebral oximetry index (COx) and other metrics of CA over time and in relation to functional neurologic outcomes.This is a single-center prospective observational study. We measured COx, a surrogate measurement of cerebral blood flow measured by near-infrared spectroscopy, which is an index of CA derived from the moving correlation between mean arterial pressure (MAP) and slow waves of regional cerebral oxygen saturation. A COx value that approaches 1 indicates impaired CA. Using COx, we determined the optimal MAP (MAPOPT) and lower and upper limits of autoregulation for individual patients. These measurements were examined in relation to modified Rankin Scale (mRS) scores.Fifteen patients (median age 57 years [interquartile range 47-69]) with 150 autoregulation measurements were included for analysis. Eleven were on veno-arterial ECMO (VA-ECMO), and four were on veno-venous ECMO (VV-ECMO). Mean COx was higher on postcannulation day 1 than on day 2 (0.2 vs. 0.09, p < 0.01), indicating improved CA over time. COx was higher in VA-ECMO patients than in VV-ECMO patients (0.12 vs. 0.06, p = 0.04). Median MAPOPT for the entire cohort was highly variable, ranging from 55 to 110 mm Hg. Patients with mRS scores 0-3 (good outcome) at 3 and 6 months spent less time outside MAPOPT compared with patients with mRS scores 4-6 (poor outcome) (74% vs. 82%, p = 0.01). The percentage of time when observed MAP was outside the limits of autoregulation was higher on postcannulation day 1 than on day 2 (18.2% vs. 3.3%, p < 0.01).In ECMO patients, it is feasible to monitor CA continuously at the bedside. CA improved over time, most significantly between postcannulation days 1 and 2. CA was more impaired in VA-ECMO patients than in VV-ECMO patients. Spending less time outside MAPOPT may be associated with achieving a good neurologic outcome.
View details for DOI 10.1007/s12028-023-01932-w
View details for PubMedID 38326536
View details for PubMedCentralID 8170265
-
Continuous Monitoring of Cerebral Autoregulation in Adults Supported by Extracorporeal Membrane Oxygenation.
Research square
2023
Abstract
Impaired cerebral autoregulation (CA) is one of several proposed mechanisms of acute brain injury in patients supported by extracorporeal membrane oxygenation (ECMO). The primary aim of this study was to determine the feasibility of continuous CA monitoring in adult ECMO patients. Our secondary aims were to describe changes in cerebral oximetry index (COx) and other metrics of CA over time and in relation to functional neurologic outcomes.This is a single-center prospective observational study. We measured Cox, a surrogate measurement of cerebral blood flow, measured by near-infrared spectroscopy, which is an index of CA derived from the moving correlation between mean arterial pressure and slow waves of regional cerebral oxygen saturation. A COx value that approaches 1 indicates impaired CA. Using COx, we determined the optimal MAP (MAPOPT), lower and upper limits of autoregulation for individual patients. These measurements were examined in relation to modified Rankin Scale (mRS) scores.Fifteen patients (median age=57 years [IQR=47-69]) with 150 autoregulation measurements were included for analysis. Eleven were on veno-arterial ECMO and 4 on veno-venous. Mean COx was higher on post-cannulation day 1 than on day 2 (0.2 vs 0.09, p<0.01), indicating improved CA over time. COx was higher in VA-ECMO patients than in VV-ECMO (0.12 vs 0.06, p=0.04). Median MAPOPT for entire cohort was highly variable, ranging 55-110 mmHg. Patients with mRS 0-3 (good outcome) at 3 and 6 months spent less time outside of MAPOPT compared to patients with mRS 4-6 (poor outcome) (74% vs 82%, p=0.01). The percentage of time when observed MAP was outside the limits of autoregulation was higher on post-cannulation day 1 than on day 2 (18.2% vs 3.3%, p<0.01).In ECMO patients, it is feasible to monitor CA continuously at the bedside. CA improved over time, most significantly between post-cannulation days 1 and 2. CA was more impaired in VA-ECMO than VV-ECMO. Spending less time outside of MAPOPT may be associated with achieving a good neurologic outcome.
View details for DOI 10.21203/rs.3.rs-3300834/v1
View details for PubMedID 37790309
View details for PubMedCentralID PMC10543291
-
CEREBRAL OXIMETRY-DERIVED OPTIMAL BLOOD PRESSURE TARGETS IN ANEURYSMAL SUBARACHNOID HEMORRHAGE
LIPPINCOTT WILLIAMS & WILKINS. 2023: 253
View details for Web of Science ID 000921450900495