Chelsea Nnebe
MD Student, expected graduation Spring 2025
Ph.D. Student in Neurosciences, admitted Autumn 2022
MSTP Student
BioPeers Lead, School of Medicine - Grad Student Support
All Publications
-
Challenges and advice for MD/PhD applicants who are underrepresented in medicine.
Molecular biology of the cell
2020; 31 (24): 2640–43
Abstract
The importance of diversity is self-evident in medicine and medical research. Not only does diversity result in more impactful scientific work, but diverse teams of researchers and clinicians are necessary to address health disparities and improve the health of underserved communities. MD/PhD programs serve an important role in training physician-scientists, so it is critical to ensure that MD/PhD students represent diverse backgrounds and experiences. Groups who are underrepresented in medicine and the biomedical sciences include individuals from certain racial and ethnic backgrounds, individuals with disabilities, individuals from disadvantaged backgrounds, and women. However, underrepresented students are routinely discouraged from applying to MD/PhD programs due to a range of factors. These factors include the significant cost of applying, which can be prohibitive for many students, the paucity of diverse mentors who share common experiences, as well as applicants' perceptions that there is inadequate support and inclusion from within MD/PhD programs. By providing advice to students who are underrepresented in medicine and describing steps programs can take to recruit and support minority applicants, we hope to encourage more students to consider the MD/PhD career path that will yield a more productive and equitable scientific and medical community.
View details for DOI 10.1091/mbc.E20-07-0444
View details for PubMedID 33180675
-
Fatostatin inhibits cancer cell proliferation by affecting mitotic microtubule spindle assembly and cell division.
The Journal of biological chemistry
2016
Abstract
The sterol regulatory element binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SCAP (SREBP cleavage-activating protein), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion and migration, and it arrests cancer cells in G2/M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242 and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited Tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers like glioblastomas that have elevated lipid metabolism, fast proliferation rates and often develop resistance to current anticancer therapies.
View details for DOI 10.1074/jbc.C116.737346
View details for PubMedID 27378817