Professional Education


  • Bachelor of Science, Sichuan University (2011)
  • Doctor of Philosophy, University of Texas Austin (2018)
  • Master of Science, Clemson University (2013)

All Publications


  • Generation of Quiescent Cardiac Fibroblasts from Human Induced Pluripotent Stem Cells for In Vitro Modeling of Cardiac Fibrosis. Circulation research Zhang, H., Tian, L., Shen, M., Wu, H., Gu, M., Tu, C., Paik, D. T., Wu, J. C. 2019

    Abstract

    RATIONALE: Activated fibroblasts are the major cell type that secrete excessive extracellular matrix in response to injury, contributing to pathological fibrosis and leading to organ failure. Effective anti-fibrotic therapeutic solutions, however, are not available due to the poorly defined characteristics and unavailability of tissue-specific fibroblasts. Recent advances in single-cell RNA-sequencing (scRNA-seq) fill such gaps of knowledge by enabling delineation of the developmental trajectories and identification of regulatory pathways of tissue-specific fibroblasts among different organs.OBJECTIVE: This study aims to define the transcriptome profiles of tissue-specific fibroblasts using recently reported mouse scRNA-seq atlas, and to develop a robust chemically defined protocol to derive cardiac fibroblasts (CFs) from human induced pluripotent stem cells (iPSCs) for in vitro modeling of cardiac fibrosis and drug screening.METHODS AND RESULTS: By analyzing the single-cell transcriptome profiles of fibroblasts from 10 selected mouse tissues, we identified distinct tissue-specific signature genes, including transcription factors that define the identities of fibroblasts in the heart, lungs, trachea, and bladder. We also determined that CFs in large are of the epicardial lineage. We thus developed a robust chemically-defined protocol that generates CFs from human iPSCs. Functional studies confirmed that iPSC-derived CFs preserved a quiescent phenotype and highly resembled primary CFs at the transcriptional, cellular, and functional levels. We demonstrated that this cell-based platform is sensitive to both pro- and anti-fibrosis drugs. Finally, we showed that crosstalk between cardiomyocytes and CFs via the atrial/brain natriuretic peptide-natriuretic peptide receptor 1 pathway is implicated in suppressing fibrogenesis.CONCLUSIONS: This study uncovers unique gene signatures that define tissue-specific identities of fibroblasts. The bona fide quiescent CFs derived from human iPSCs can serve as a faithful in vitro platform to better understand the underlying mechanisms of cardiac fibrosis and to screen anti-fibrotic drugs.

    View details for DOI 10.1161/CIRCRESAHA.119.315491

    View details for PubMedID 31288631

  • Commonly used thiol-containing antioxidants reduce cardiac differentiation and alter gene expression ratios of sarcomeric isoforms EXPERIMENTAL CELL RESEARCH Tu, C., Allen, A., Deng, W., Conroy, O., Nambiar, M., Zoldan, J. 2018; 370 (1): 150–59

    Abstract

    Reactive oxygen species (ROS) scavengers such as beta-mercaptoethanol (BME) and monothiol glycerol (MTG) are extensively used in stem cell research to prevent cellular oxidative stress. However, how these antioxidant supplements impact stem cell cardiac differentiation, a process regulated by redox-signaling remains unknown. In this study, we found that removal of BME from the conventional high-glucose, serum-based differentiation medium improved cardiac differentiation efficiency by 2-3 fold. BME and MTG treatments during differentiation significantly reduced mRNA expression of cardiac progenitor markers (NKX2.5 and ISL1) as well as sarcomeric markers (MLC2A, MLC2V, TNNI3, MYH6 and MYH7), suggesting reduced cardiomyogenesis by BME or MTG. Moreover, BME and MTG altered the expression ratios between the sarcomeric isoforms. In particular, TNNI3 to TNNI1 ratio and MLC2V to MLC2A ratio were significantly lower in BME or MTG treated cells than untreated cells, implying altered cardiomyocyte phenotype and maturity. Lastly, BME and MTG treatments resulted in less frequent beating, slower contraction and relaxation velocities than untreated cells. Interestingly, none of the above-mentioned effects was observed with Trolox, a non-thiol based antioxidant, despite its strong antioxidant activity. This work demonstrates that commonly used antioxidant supplements may cause considerable changes to cellular redox state and the outcome of differentiation.

    View details for PubMedID 29920245

  • Strategies for Improving the Maturity of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes CIRCULATION RESEARCH Tu, C., Chao, B. S., Wu, J. C. 2018; 123 (5): 512–14
  • Strategies for Improving the Maturity of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation research Tu, C., Chao, B. S., Wu, J. C. 2018; 123 (5): 512–14

    View details for PubMedID 30355143

    View details for PubMedCentralID PMC6392006

  • Glycogen synthase kinase-3 inhibition sensitizes human induced pluripotent stem cells to thiol-containing antioxidants induced apoptosis STEM CELL RESEARCH Tu, C., Xu, R., Koleti, M., Zoldan, J. 2017; 23: 182–87

    Abstract

    Inhibition of glycogen synthase kinase 3 (GSK3) is an extensively used strategy to activate Wnt pathway for pluripotent stem cell (PSC) differentiation. However, the effects of such inhibition on PSCs, besides upregulating the Wnt pathway, have rarely been investigated despite that GSK3 is broadly involved in other cellular activities such as insulin signaling and cell growth/survival regulation. Here we describe a previously unknown synergistic effect between GSK3 inhibition (e.g., Chir99021 and LY2090314) and various normally non-toxic thiol-containing antioxidants (e.g., N-acetylcysteine, NAC) on the induction of apoptosis in human induced pluripotent stem cells (iPSCs). Neither Chir99021 nor the antioxidants individually induced significant apoptosis, whereas their combined treatment resulted in rapid and extensive apoptosis, with substantial caspase 3 activity observed within 3h and over 90% decrease in cell viability after 24h. We confirmed the generality of this phenomenon with multiple independent iPSCs lines, various thiol-based antioxidants and distinct GSK3 inhibitors. Mechanistically, we demonstrated that rapamycin treatment could substantially reduce cell death, suggesting the critical role of mammalian target of rapamycin (mTOR). Akt dysregulation was also found to partially contribute to cell apoptosis but was not the primary cause. Further, this coordinated proapoptotic effect was not detected in mouse ESCs but was present in another human cells line: a breast cancer cell line (MDA-MB-231). Given the wide use of GSK3 inhibition in biomedical research: from iPSC differentiation to cancer intervention and the treatment of neuronal diseases, researchers can potentially take advantage of or avoid this synergistic effect for improved experimental or clinical outcome.

    View details for PubMedID 28772167

  • Monitoring protein synthesis in single live cancer cells INTEGRATIVE BIOLOGY Tu, C., Santo, L., Mishima, Y., Raje, N., Smilansky, Z., Zoldan, J. 2016; 8 (5): 645–53

    Abstract

    Protein synthesis is generally under sophisticated and dynamic regulation to meet the ever-changing demands of a cell. Global up or down-regulation of protein synthesis and the shift of protein synthesis location (as shown, for example, during cellular stress or viral infection) are recognized as cellular responses to environmental changes such as nutrient/oxygen deprivation or to alterations such as pathological mutations in cancer cells. Monitoring protein synthesis in single live cells can be a powerful tool for cancer research. Here we employed a microfluidic platform to perform high throughput delivery of fluorescent labeled tRNAs into multiple myeloma cells with high transfection efficiency (∼45%) and high viability (>80%). We show that the delivered tRNAs were actively recruited to the ER for protein synthesis and that treatment with puromycin effectively disrupted this process. Interestingly, we observed the scattered distribution of tRNAs in cells undergoing mitosis, which has not been previously reported. Fluorescence lifetime analysis detected extensive FRET signals generated from tRNAs labeled as FRET pairs, further confirming that the delivered tRNAs were used by active ribosomes for protein translation. Our work demonstrates that the microfluidic delivery of FRET labeled tRNAs into living cancer cells can provide new insights into basic cancer metabolism and has the potential to serve as a platform for drug screening, diagnostics, or personalized medication.

    View details for PubMedID 26956582

  • Nanoscale Strategies: Treatment for Peripheral Vascular Disease and Critical Limb Ischemia ACS NANO Tu, C., Das, S., Baker, A. B., Zoldan, J., Suggs, L. J. 2015; 9 (4): 3436-3452

    Abstract

    Peripheral vascular disease (PVD) is one of the most prevalent vascular diseases in the U.S. afflicting an estimated 8 million people. Obstruction of peripheral arteries leads to insufficient nutrients and oxygen supply to extremities, which, if not treated properly, can potentially give rise to a severe condition called critical limb ischemia (CLI). CLI is associated with extremely high morbidities and mortalities. Conventional treatments such as angioplasty, atherectomy, stent implantation and bypass surgery have achieved some success in treating localized macrovascular disease but are limited by their invasiveness. An emerging alternative is the use of growth factor (delivered as genes or proteins) and cell therapy for PVD treatment. By delivering growth factors or cells to the ischemic tissue, one can stimulate the regeneration of functional vasculature network locally, re-perfuse the ischemic tissue, and thus salvage the limb. Here we review recent advance in nanomaterials, and discuss how their application can improve and facilitate growth factor or cell therapies. Specifically, nanoparticles (NPs) can serve as drug carrier and target to ischemic tissues and achieve localized and sustained release of pro-angiogenic proteins. As nonviral vectors, NPs can greatly enhance the transfection of target cells with pro-angiogenic genes with relatively fewer safety concern. Further, NPs may also be used in combination with cell therapy to enhance cell retention, cell survival and secretion of angiogenic factors. Lastly, nano/micro fibrous vascular grafts can be engineered to better mimic the structure and composition of native vessels, and hopefully overcome many complications/limitations associated with conventional synthetic grafts.

    View details for DOI 10.1021/nn507269g

    View details for PubMedID 25844518