All Publications


  • Giant Terahertz Birefringence in an Ultrathin Anisotropic Semimetal. Nano letters Sie, E. J., Othman, M. A., Nyby, C. M., Pemmaraju, D., Garcia, C. A., Wang, Y., Guzelturk, B., Xia, C., Xiao, J., Poletayev, A., Ofori-Okai, B. K., Hoffmann, M. C., Park, S., Shen, X., Yang, J., Li, R., Reid, A. H., Weathersby, S., Muscher, P., Finney, N., Rhodes, D., Balicas, L., Nanni, E., Hone, J., Chueh, W., Devereaux, T. P., Narang, P., Heinz, T. F., Wang, X., Lindenberg, A. M. 2024

    Abstract

    Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

    View details for DOI 10.1021/acs.nanolett.4c00758

    View details for PubMedID 38717626

  • Determining hot-carrier transport dynamics from terahertz emission. Science (New York, N.Y.) Taghinejad, M., Xia, C., Hrton, M., Lee, K. T., Kim, A. S., Li, Q., Guzelturk, B., Kalousek, R., Xu, F., Cai, W., Lindenberg, A. M., Brongersma, M. L. 2023; 382 (6668): 299-305

    Abstract

    Understanding the ultrafast excitation and transport dynamics of plasmon-driven hot carriers is critical to the development of optoelectronics, photochemistry, and solar-energy harvesting. However, the ultrashort time and length scales associated with the behavior of these highly out-of-equilibrium carriers have impaired experimental verification of ab initio quantum theories. Here, we present an approach to studying plasmonic hot-carrier dynamics that analyzes the temporal waveform of coherent terahertz bursts radiated by photo-ejected hot carriers from designer nano-antennas with a broken symmetry. For ballistic carriers ejected from gold antennas, we find an ~11-femtosecond timescale composed of the plasmon lifetime and ballistic transport time. Polarization- and phase-sensitive detection of terahertz fields further grant direct access to their ballistic transport trajectory. Our approach opens explorations of ultrafast carrier dynamics in optically excited nanostructures.

    View details for DOI 10.1126/science.adj5612

    View details for PubMedID 37856614

  • Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor. Nature communications Shi, J., Xu, H., Heide, C., HuangFu, C., Xia, C., de Quesada, F., Shen, H., Zhang, T., Yu, L., Johnson, A., Liu, F., Shi, E., Jiao, L., Heinz, T., Ghimire, S., Li, J., Kong, J., Guo, Y., Lindenberg, A. M. 2023; 14 (1): 4953

    Abstract

    Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials-the Janus transition metal dichalcogenides in the 1 T' phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1 T' MoSSe (e.g., > 50 times higher than 2H MoS2 for 18th order harmonic generation; > 20 times higher than 2H MoS2 for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit.

    View details for DOI 10.1038/s41467-023-40373-z

    View details for PubMedID 37587120

    View details for PubMedCentralID 8282873