Christopher William Carreras
Director of Preclinical Pharmacology
Innovative Medicines Accelerator (IMA)
All Publications
-
Purification and in vitro reconstitution of the essential protein components of an aromatic polyketide synthase
BIOCHEMISTRY
1998; 37 (8): 2084-2088
Abstract
A minimal set of proteins which catalyze the synthesis of aromatic polketides from malonyl CoA has been purified and partially characterized. Plasmid-encoded actinorhodin (act) ketosynthase/chain-length factor (KS/CLF) complex was purified from Streptomyces coelicolor CH999/pSEK38, and assayed with purified aromatic PKS holo-ACPs which were overproduced and purified from Escherichia coli and phosphopantetheinylated in vitro using purified E. coli holo-ACP synthase. When highly purified preparations of KS/CLF, and holo-ACP failed to catalyze polyketide biosynthesis, a fourth protein was sought and purified from the S. coelicolor CH999 host on the basis of its ability to complement KS, CLF, and holo-ACP in polyketide synthesis. N-terminal sequencing identified this protein as the fatty acid synthase (fabD) malonyl CoA:ACP transacylase (MAT), recruited from primary metabolism. A alpha2/beta2 structure was shown for the act KS/CLF complex, and three malonyl-enzyme biosynthetic intermediates were identified, defining an escorted path followed by malonyl groups en route from CoA to polyketide.
View details for Web of Science ID 000072299900002
View details for PubMedID 9518007
-
Utilization of enzymatically phosphopantetheinylated acyl carrier proteins and acetyl-acyl carrier proteins by the actinorhodin polyketide synthase
BIOCHEMISTRY
1997; 36 (39): 11757-11761
Abstract
The functional reconstitution of two purified proteins of an aromatic polyketide synthase pathway, the acyl carrier protein (ACP) and holo-ACP synthase (ACPS), is described. Holo-ACPs were enzymatically synthesized from coenzyme A and apo-ACPs using Escherichia coli ACPS. Frenolicin and granaticin holo-ACPs formed in this manner were shown to be fully functional together with the other components of the minimal actinorhodin polyketide synthase (act PKS), resulting in synthesis of the same aromatic polyketides as those formed by the act PKS in vivo. ACPS also catalyzed the transfer of acetyl-, propionyl-, butyryl-, benzoyl-, phenylacetyl-, and malonylphosphopantetheines to apo-ACPs from their corresponding coenzyme As, as detected by electrophoresis and/or mass spectrometry. A steady state kinetic study showed that acetyl-coenzyme A is as efficient an ACPS substrate as coenzyme A, with kcat and Km values of 20 min-1 and 25 microM, respectively. In contrast to acetyl-coenzyme A, enzymatically synthesized acetyl-ACPs were shown to be efficient substrates for the act PKS, indicating that acetyl-ACP is a chemically competent intermediate of aromatic polyketide biosynthesis. Together, these methods provide a valuable tool for dissecting the mechanisms and molecular recognition features of polyketide biosynthesis.
View details for Web of Science ID A1997XY95300023
View details for PubMedID 9305965