Dashiel Szelenyi Grusky
Ph.D. Student in Chemistry, admitted Autumn 2018
All Publications
-
Recombination between 13C and 2H to Form Acetylide (13C22H-) Probes' Nanoscale Interactions in Lipid Bilayers via Dynamic Secondary Ion Mass Spectrometry: Cholesterol and GM1 Clustering.
Analytical chemistry
2022
Abstract
Although it is thought that there is lateral heterogeneity of lipid and protein components within biological membranes, probing this heterogeneity has proven challenging. The difficulty in such experiments is due to both the small length scale over which such heterogeneity can occur, and the significant perturbation resulting from fluorescent or spin labeling on the delicate interactions within bilayers. Atomic recombination during dynamic nanoscale secondary ion imaging mass spectrometry (NanoSIMS) is a non-perturbative method for examining nanoscale bilayer interactions. Atomic recombination is a variation on conventional NanoSIMS imaging, whereby an isotope on one molecule combines with a different isotope on another molecule during the ionization process, forming an isotopically enriched polyatomic ion in a distance-dependent manner. We show that the recombinant ion, 13C22H-, is formed in high yield from 13C- and 2H-labeled lipids. The low natural abundance of triply labeled acetylide also makes it an ideal ion to probe GM1 clusters in model membranes and the effects of cholesterol on lipid-lipid interactions. We find evidence supporting the cholesterol condensation effect as well as the presence of nanoscale GM1 clusters in model membranes.
View details for DOI 10.1021/acs.analchem.2c01336
View details for PubMedID 35759338
-
Recombination between C-13 and H-2 to form acetylide ((C2H-)-C-13-H-2) probes nanoscale interactions in lipid bilayers: cholesterol and GM1 clustering
CELL PRESS. 2022: 486A
View details for Web of Science ID 000759523003180