Academic Appointments

Current Research and Scholarly Interests

I am currently applying bioinformatic transcriptomic analysis and fourier-transform infrared spectromicroscopy to better understand the consequences of redox stress in cells derived from control patients, and patients with inherited mitochondrial dysfunctions.

All Publications

  • Highlighting the Undetectable - Fluorescence Molecular Imaging in Gastrointestinal Endoscopy. Molecular imaging and biology Stibbe, J. A., Hoogland, P., Achterberg, F. B., Holman, D. R., Sojwal, R. S., Burggraaf, J., Vahrmeijer, A. L., Nagengast, W. B., Rogalla, S. 2022


    Flexible high-definition white-light endoscopy is the current gold standard in screening for cancer and its precursor lesions in the gastrointestinal tract. However, miss rates are high, especially in populations at high risk for developing gastrointestinal cancer (e.g., inflammatory bowel disease, Lynch syndrome, or Barrett's esophagus) where lesions tend to be flat and subtle. Fluorescence molecular endoscopy (FME) enables intraluminal visualization of (pre)malignant lesions based on specific biomolecular features rather than morphology by using fluorescently labeled molecular probes that bind to specific molecular targets. This strategy has the potential to serve as a valuable tool for the clinician to improve endoscopic lesion detection and real-time clinical decision-making. This narrative review presents an overview of recent advances in FME, focusing on probe development, techniques, and clinical evidence. Future perspectives will also be addressed, such as the use of FME in patient stratification for targeted therapies and potential alliances with artificial intelligence. KEY MESSAGES: • Fluorescence molecular endoscopy is a relatively new technology that enables safe and real-time endoscopic lesion visualization based on specific molecular features rather than on morphology, thereby adding a layer of information to endoscopy, like in PET-CT imaging. • Recently the transition from preclinical to clinical studies has been made, with promising results regarding enhancing detection of flat and subtle lesions in the colon and esophagus. However, clinical evidence needs to be strengthened by larger patient studies with stratified study designs. • In the future fluorescence molecular endoscopy could serve as a valuable tool in clinical workflows to improve detection in high-risk populations like patients with Barrett's esophagus, Lynch syndrome, and inflammatory bowel syndrome, where flat and subtle lesions tend to be malignant up to five times more often. • Fluorescence molecular endoscopy has the potential to assess therapy responsiveness in vivo for targeted therapies, thereby playing a role in personalizing medicine. • To further reduce high miss rates due to human and technical factors, joint application of artificial intelligence and fluorescence molecular endoscopy are likely to generate added value.

    View details for DOI 10.1007/s11307-022-01741-1

    View details for PubMedID 35764908

  • Antimicrobial peptides and the gut microbiome in inflammatory bowel disease. World journal of gastroenterology Gubatan, J., Holman, D. R., Puntasecca, C. J., Polevoi, D., Rubin, S. J., Rogalla, S. 2021; 27 (43): 7402-7422


    Antimicrobial peptides (AMP) are highly diverse and dynamic molecules that are expressed by specific intestinal epithelial cells, Paneth cells, as well as immune cells in the gastrointestinal (GI) tract. They play critical roles in maintaining tolerance to gut microbiota and protecting against enteric infections. Given that disruptions in tolerance to commensal microbiota and loss of barrier function play major roles in the pathogenesis of inflammatory bowel disease (IBD) and converge on the function of AMP, the significance of AMP as potential biomarkers and novel therapeutic targets in IBD have been increasingly recognized in recent years. In this frontier article, we discuss the function and mechanisms of AMP in the GI tract, examine the interaction of AMP with the gut microbiome, explore the role of AMP in the pathogenesis of IBD, and review translational applications of AMP in patients with IBD.

    View details for DOI 10.3748/wjg.v27.i43.7402

    View details for PubMedID 34887639

    View details for PubMedCentralID PMC8613745

  • Antimicrobial peptides and the gut microbiome in inflammatory bowel disease WORLD JOURNAL OF GASTROENTEROLOGY Gubatan, J., Holman, D. R., Puntasecca, C. J., Polevoi, D., Rubin, S. S., Rogalla, S. 2021; 27 (43): 7402-7422
  • Preparation of Tc99m-Labeled Pseudomonas Bacteriophage without Adversely Impacting Infectivity or Biodistribution BIOCONJUGATE CHEMISTRY Holman, D., Lungren, M. P., Hardy, J., Contag, C., Blankenberg, F. 2017; 28 (11): 2698–2706


    Bacteriophages (phages) are ubiquitous viruses which have adapted to infect and replicate within target bacteria, their only known hosts, in a strain specific fashion with minimal cross infectivity. The recent steep rise in antibiotic resistance throughout the world has renewed interest in adapting phages for the imaging and treatment of bacterial infection in humans. In this article, we describe the current limitations surrounding the radiolabeling of phage for the imaging and treatment of bacterial infection and methods to overcome these difficulties. Specifically, we examined the effects of hydrazinonicotinamide conjugation and removal of bacterial DNA on the infectivity, biodistribution, and radionuclide imaging of a phage lytic for a clinically relevant strain of Pseudomonas aeruginosa, a common Gram-negative bacterial pathogen often resistant to multiple antibiotics. We found that all but the briefest reaction of concentrated phage with hydrazinonicotinamide (≤3 min) resulted in nearly complete loss of infectivity. Furthermore, we determined that digestion and removal of bacterial DNA was needed to avoid high nonspecific uptake of hydrazinonicotinamide-labeled phage within the liver and spleen as well as prolonged circulation in the blood. We also demonstrate the surprisingly wide soft tissue and organ biodistribution and rapid pharmacokinetics of 99mTc-hydrazinonicotinamide-labeled phage in normal mice as well as its imaging characteristics and efficacy in wounded mice infected with bioluminescent Pseudomonas aeruginosa. In conclusion, the preservation of phage infectivity and removal of all bacterial containments including DNA are critical methodologic considerations in the labeling of phages for imaging and therapy.

    View details for PubMedID 29020448