Bio


Derek, age 28, graduated from Stanford University in 2013 with dual Bachelor’s in Civil and Environmental Engineering and Architectural Design, and in 2015 with a Master’s in Structural Engineering and Geomechanics. He was project manager of Stanford’s first-ever entry to the U.S. DOE’s 2013 Solar Decathlon and has been featured as an up-and-coming designer in the Los Angeles Times, in Home Energy magazine’s “30 under 30”, at TEDxStanford, and at Stanford+Connects NY and Seattle. He is Co-Founder of City Systems and a Lecturer in Stanford’s Future Bay Initiative (bay.stanford.edu).

Academic Appointments


2020-21 Courses


All Publications


  • When floods hit the road: Resilience to flood-related traffic disruption in the San Francisco Bay Area and beyond. Science advances Kasmalkar, I. G., Serafin, K. A., Miao, Y., Bick, I. A., Ortolano, L., Ouyang, D., Suckale, J. 2020; 6 (32): eaba2423

    Abstract

    As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, interannual anomalies driven by large-scale climate variability such as the El Nino Southern Oscillation, and sea level rise. When identifying inundated roads, we propose corrections for potential biases arising from model integration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show that metric reach, a measure of road network density, is a better proxy for delays than flood exposure.

    View details for DOI 10.1126/sciadv.aba2423

    View details for PubMedID 32821823