Professional Education


  • Doctor of Philosophy, Universite De Montpellier (2014)

Stanford Advisors


All Publications


  • Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science (New York, N.Y.) Weber, E. W., Parker, K. R., Sotillo, E., Lynn, R. C., Anbunathan, H., Lattin, J., Good, Z., Belk, J. A., Daniel, B., Klysz, D., Malipatlolla, M., Xu, P., Bashti, M., Heitzeneder, S., Labanieh, L., Vandris, P., Majzner, R. G., Qi, Y., Sandor, K., Chen, L., Prabhu, S., Gentles, A. J., Wandless, T. J., Satpathy, A. T., Chang, H. Y., Mackall, C. L. 2021; 372 (6537)

    Abstract

    T cell exhaustion limits immune responses against cancer and is a major cause of resistance to chimeric antigen receptor (CAR)-T cell therapeutics. Using murine xenograft models and an in vitro model wherein tonic CAR signaling induces hallmark features of exhaustion, we tested the effect of transient cessation of receptor signaling, or rest, on the development and maintenance of exhaustion. Induction of rest through enforced down-regulation of the CAR protein using a drug-regulatable system or treatment with the multikinase inhibitor dasatinib resulted in the acquisition of a memory-like phenotype, global transcriptional and epigenetic reprogramming, and restored antitumor functionality in exhausted CAR-T cells. This work demonstrates that rest can enhance CAR-T cell efficacy by preventing or reversing exhaustion, and it challenges the notion that exhaustion is an epigenetically fixed state.

    View details for DOI 10.1126/science.aba1786

    View details for PubMedID 33795428

  • Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity Chiou, S. H., Tseng, D. n., Reuben, A. n., Mallajosyula, V. n., Molina, I. S., Conley, S. n., Wilhelmy, J. n., McSween, A. M., Yang, X. n., Nishimiya, D. n., Sinha, R. n., Nabet, B. Y., Wang, C. n., Shrager, J. B., Berry, M. F., Backhus, L. n., Lui, N. S., Wakelee, H. A., Neal, J. W., Padda, S. K., Berry, G. J., Delaidelli, A. n., Sorensen, P. H., Sotillo, E. n., Tran, P. n., Benson, J. A., Richards, R. n., Labanieh, L. n., Klysz, D. D., Louis, D. M., Feldman, S. A., Diehn, M. n., Weissman, I. L., Zhang, J. n., Wistuba, I. I., Futreal, P. A., Heymach, J. V., Garcia, K. C., Mackall, C. L., Davis, M. M. 2021; 54 (3): 586–602.e8

    Abstract

    To identify disease-relevant T cell receptors (TCRs) with shared antigen specificity, we analyzed 778,938 TCRβ chain sequences from 178 non-small cell lung cancer patients using the GLIPH2 (grouping of lymphocyte interactions with paratope hotspots 2) algorithm. We identified over 66,000 shared specificity groups, of which 435 were clonally expanded and enriched in tumors compared to adjacent lung. The antigenic epitopes of one such tumor-enriched specificity group were identified using a yeast peptide-HLA A∗02:01 display library. These included a peptide from the epithelial protein TMEM161A, which is overexpressed in tumors and cross-reactive epitopes from Epstein-Barr virus and E. coli. Our findings suggest that this cross-reactivity may underlie the presence of virus-specific T cells in tumor infiltrates and that pathogen cross-reactivity may be a feature of multiple cancers. The approach and analytical pipelines generated in this work, as well as the specificity groups defined here, present a resource for understanding the T cell response in cancer.

    View details for DOI 10.1016/j.immuni.2021.02.014

    View details for PubMedID 33691136

  • PET reporter gene imaging and ganciclovir-mediated ablation of chimeric antigen receptor T-cells in solid tumors. Cancer research Murty, S., Labanieh, L., Murty, T., Gowrishankar, G., Haywood, T., Alam, I. S., Beinat, C., Robinson, E., Aalipour, A., Klysz, D. D., Cochran, J. R., Majzner, R. G., Mackall, C. L., Gambhir, S. S. 2020

    Abstract

    Imaging strategies to monitor chimeric antigen receptor (CAR) T-cell biodistribution and proliferation harbor the potential to facilitate clinical translation for the treatment of both liquid and solid tumors. Additionally, the potential adverse effects of CAR T-cells highlight the need for mechanisms to modulate CAR T-cell activity. The herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene has previously been translated as a positron emission tomography (PET) reporter gene for imaging of T-cell trafficking in brain tumor patients. The HSV1-TK enzyme can act as a suicide gene of transduced cells through treatment with the prodrug ganciclovir (GCV). Here we report the molecular engineering, imaging, and GCV-mediated destruction of B7H3 CAR T-cells incorporating a mutated version of the HSV1-tk gene (sr39tk) with improved enzymatic activity for GCV. The sr39tk gene did not affect B7H3 CAR T-cell functionality and in vitro and in vivo studies in osteosarcoma models showed no significant effect on B7H3 CAR T-cell antitumor activity. PET/CT imaging with 9-(4-[18F]-fluoro-3-[hydroxymethyl]butyl)guanine [18F]FHBG of B7H3-sr39tk CAR T-cells in an orthotopic model of osteosarcoma revealed tumor homing and systemic immune expansion. Bioluminescence and PET imaging of B7H3-sr39tk CAR T-cells confirmed complete tumor ablation with intraperitoneal GCV administration. This imaging and suicide ablation system can provide insight into CAR T-cell migration and proliferation during clinical trials while serving as a suicide switch to limit potential toxicities.

    View details for DOI 10.1158/0008-5472.CAN-19-3579

    View details for PubMedID 32958548