Ebsy Jaimon
Postdoctoral Scholar, Biochemistry
All Publications
-
PathogenicLRRK2mutations cause loss of primary cilia and Neurturin in striatal parvalbumin interneurons.
Life science alliance
2025; 8 (1)
Abstract
Parkinson's disease-associated, activating mutations in the LRRK2 kinase block primary cilium formation in cell culture and in specific cell types in the brain. In the striatum that is important for movement control, about half of astrocytes and cholinergic interneurons, but not the predominant medium spiny neurons, lose their primary cilia. Here, we show that mouse and human striatal parvalbumin interneurons that are inhibitory regulators of movement also lose primary cilia. Without cilia, these neurons are not able to respond to Sonic hedgehog signals that normally induce the expression of Patched RNA, and their numbers decrease. In addition, in mouse, glial cell line-derived neurotrophic factor-related Neurturin RNA is significantly decreased. These experiments highlight the importance of parvalbumin neurons in cilium-dependent, neuroprotective signaling pathways and show that LRRK2 activation correlates with decreased Neurturin production, resulting in less neuroprotection for dopamine neurons.
View details for DOI 10.26508/lsa.202402922
View details for PubMedID 39537338
-
Loss of primary cilia and dopaminergic neuroprotection in pathogenic LRRK2-driven and idiopathic Parkinson's disease.
Proceedings of the National Academy of Sciences of the United States of America
2024; 121 (32): e2402206121
Abstract
Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.
View details for DOI 10.1073/pnas.2402206121
View details for PubMedID 39088390
-
Loss of primary cilia and dopaminergic neuroprotection in pathogenic LRRK2-driven and idiopathic Parkinson's disease.
bioRxiv : the preprint server for biology
2024
Abstract
Activating LRRK2 mutations cause Parkinson's disease. Previously, we showed that cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2 mutant mice. Single nucleus RNA sequencing shows that cilia loss in cholinergic interneurons correlates with higher LRRK2 expression and decreased glial derived neurotrophic factor transcription. Nevertheless, much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia in mice and humans. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. Human striatal tissue from LRRK2 pathway mutation carriers and idiopathic Parkinson's disease show similar cilia loss in cholinergic interneurons and astrocytes and overall loss of such neurons. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's disease.Teaser: Cilia loss in Parkinson's disease decreases dopaminergic neuroprotection due to inability to sense Hedgehog signals.
View details for DOI 10.1101/2024.01.15.575737
View details for PubMedID 38293195
-
Parkinson's VPS35[D620N] mutation induces LRRK2-mediated lysosomal association of RILPL1 and TMEM55B.
Science advances
2023; 9 (50): eadj1205
Abstract
We demonstrate that the Parkinson's VPS35[D620N] mutation alters the expression of ~220 lysosomal proteins and stimulates recruitment and phosphorylation of Rab proteins at the lysosome. This recruits the phospho-Rab effector protein RILPL1 to the lysosome where it binds to the lysosomal integral membrane protein TMEM55B. We identify highly conserved regions of RILPL1 and TMEM55B that interact and design mutations that block binding. In mouse fibroblasts, brain, and lung, we demonstrate that the VPS35[D620N] mutation reduces RILPL1 levels, in a manner reversed by LRRK2 inhibition and proteasome inhibitors. Knockout of RILPL1 enhances phosphorylation of Rab substrates, and knockout of TMEM55B increases RILPL1 levels. The lysosomotropic agent LLOMe also induced LRRK2 kinase-mediated association of RILPL1 to the lysosome, but to a lower extent than the D620N mutation. Our study uncovers a pathway through which dysfunctional lysosomes resulting from the VPS35[D620N] mutation recruit and activate LRRK2 on the lysosomal surface, driving assembly of the RILPL1-TMEM55B complex.
View details for DOI 10.1126/sciadv.adj1205
View details for PubMedID 38091401
-
Genome-wide screen reveals Rab12 GTPase as a critical activator of Parkinson's disease-linked LRRK2 kinase.
eLife
2023; 12
Abstract
Activating mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases, particularly Rab10 and Rab8A, and we showed previously that these phosphoRabs play an important role in LRRK2 membrane recruitment and activation (Vides et al., 2022). To learn more about LRRK2 pathway regulation, we carried out an unbiased, CRISPR-based genome-wide screen to identify modifiers of cellular phosphoRab10 levels. A flow cytometry assay was developed to detect changes in phosphoRab10 levels in pools of mouse NIH-3T3 cells harboring unique CRISPR guide sequences. Multiple negative and positive regulators were identified; surprisingly, knockout of the Rab12 gene was especially effective in decreasing phosphoRab10 levels in multiple cell types and knockout mouse tissues. Rab-driven increases in phosphoRab10 were specific for Rab12, LRRK2 dependent and PPM1H phosphatase reversible, and did not require Rab12 phosphorylation; they were seen with wild type and pathogenic G2019S and R1441C LRRK2. As expected for a protein that regulates LRRK2 activity, Rab12 also influenced primary cilia formation. Alphafold modeling revealed a novel Rab12 binding site in the LRRK2 Armadillo domain and we show that residues predicted to be essential for Rab12 interaction at this site influence phosphoRab10 and phosphoRab12 levels in a manner distinct from Rab29 activation of LRRK2. Our data show that Rab12 binding to a new site in the LRRK2 Armadillo domain activates LRRK2 kinase for Rab phosphorylation and could serve as a new therapeutic target for a novel class of LRRK2 inhibitors that do not target the kinase domain.
View details for DOI 10.7554/eLife.87098
View details for PubMedID 37874635
-
Insights into cargo sorting by SNX32 and its role in neurite outgrowth.
eLife
2023; 12
Abstract
Sorting nexins (SNX) are a family of proteins containing the Phox homology domain, which shows a preferential endo-membrane association and regulates cargo sorting processes. Here, we established that SNX32, a SNX-BAR (Bin/Amphiphysin/Rvs) sub-family member associates with SNX4 via its BAR domain and the residues A226, Q259, E256, R366 of SNX32, and Y258, S448 of SNX4 that lie at the interface of these two SNX proteins mediates this association. SNX32, via its PX domain, interacts with the Transferrin receptor (TfR) and Cation Independent Mannose-6-Phosphate Receptor (CIMPR), and the conserved F131 in its PX domain is important in stabilizing these interactions. Silencing of SNX32 leads to a defect in intracellular trafficking of TfR and CIMPR. Further, using SILAC-based differential proteomics of the wild type and the mutant SNX32, impaired in cargo binding, we identified Basigin (BSG), an immunoglobulin superfamily member, as a potential interactor of SNX32 in SHSY5Y cells. We then demonstrated that SNX32 binds to BSG through its PX domain and facilitates its trafficking to the cell surface. In Neuro-Glial cell lines, silencing of SNX32 leads to defects in neuronal differentiation. Moreover, abrogation in lactate transport in the SNX32 depleted cells led us to propose that SNX32 may contribute to maintaining the neuro-glial coordination via its role in BSG trafficking and the associated Monocarboxylate transporter activity. Taken together, our study showed that SNX32 mediates the trafficking of specific cargo molecules along distinct pathways.
View details for DOI 10.7554/eLife.84396
View details for PubMedID 37158588