Bio
I am interested in processes that impact the evolution of the Antarctic ice sheet and could ultimately lead to wide spread mass loss and unstable retreat. Ice flow is modulated by conditions at the ice-bed interface however the basal environment is very challenging to directly measure due to the remote location, vast size, and extreme thickness of the ice sheet. As a result, it's unknown how the ice sheet could evolve to changes in basal forcing. I am particularly interested in the basal thermal regime and the ability of basal thawing to drive changes in ice flow and stability. The integration of radar analysis and numerical modeling is a powerful way to investigate this problem. With these techniques, I am investigating the ice sheet’s response to changes in the extent of thawed basal regions in order to project possible mass loss and contribution to sea level rise.
Current Research and Scholarly Interests
I am investigating how changes in the thermal regime at the ice-bed interface could force the Antarctic ice sheet to evolve. My approach combines large scale ice sheet modeling, regional airborne ice-penetrating radar sounding analysis, and the synthesis of the two. Currently, I am using the Ice-sheet and Sea-level system model (ISSM) to learn about basal thaw processes that could drive mass loss and ultimately contribute to sea level rise.
All Publications
-
Rapid and accurate polarimetric radar measurements of ice crystal fabric orientation at the Western Antarctic Ice Sheet (WAIS) Divide ice core site
CRYOSPHERE
2021; 15 (8): 4117-4133
View details for DOI 10.5194/tc-15-4117-2021
View details for Web of Science ID 000692000000001
-
Linear Relation Between Shifting ITCZ and Dust Hemispheric Asymmetry
GEOPHYSICAL RESEARCH LETTERS
2020; 47 (22)
View details for DOI 10.1029/2020GL090499
View details for Web of Science ID 000595819700047
-
Seasonal Asymmetries in the Lag between Insolation and Surface Temperature
JOURNAL OF CLIMATE
2020; 33 (10): 3921–45
View details for DOI 10.1175/JCLI-D-19-0329.1
View details for Web of Science ID 000531414600001
-
Evaporative Resistance is of Equal Importance as Surface Albedo in High-Latitude Surface Temperatures Due to Cloud Feedbacks
GEOPHYSICAL RESEARCH LETTERS
2020; 47 (4)
View details for DOI 10.1029/2019GL085663
View details for Web of Science ID 000529120100072
-
Southern African orography impacts on low clouds and the Atlantic ITCZ in a coupled model
GEOPHYSICAL RESEARCH LETTERS
2017; 44 (7): 3283–89
View details for DOI 10.1002/2017GL073098
View details for Web of Science ID 000400186500036