All Publications


  • The transition from vision to language: Distinct patterns of functional connectivity for subregions of the visual word form area. Human brain mapping Yablonski, M., Karipidis, I. I., Kubota, E., Yeatman, J. D. 2024; 45 (4): e26655

    Abstract

    Reading entails transforming visual symbols to sound and meaning. This process depends on specialized circuitry in the visual cortex, the visual word form area (VWFA). Recent findings suggest that this text-selective cortex comprises at least two distinct subregions: the more posterior VWFA-1 is sensitive to visual features, while the more anterior VWFA-2 processes higher level language information. Here, we explore whether these two subregions also exhibit different patterns of functional connectivity. To this end, we capitalize on two complementary datasets: Using the Natural Scenes Dataset (NSD), we identify text-selective responses in high-quality 7T adult data (N=8), and investigate functional connectivity patterns of VWFA-1 and VWFA-2 at the individual level. We then turn to the Healthy Brain Network (HBN) database to assess whether these patterns replicate in a large developmental sample (N=224; age 6-20years), and whether they relate to reading development. In both datasets, we find that VWFA-1 is primarily correlated with bilateral visual regions. In contrast, VWFA-2 is more strongly correlated with language regions in the frontal and lateral parietal lobes, particularly the bilateral inferior frontal gyrus. Critically, these patterns do not generalize to adjacent face-selective regions, suggesting a specific relationship between VWFA-2 and the frontal language network. No correlations were observed between functional connectivity and reading ability. Together, our findings support the distinction between subregions of the VWFA, and suggest that functional connectivity patterns in the ventral temporal cortex are consistent over a wide range of reading skills.

    View details for DOI 10.1002/hbm.26655

    View details for PubMedID 38488471

  • Rethinking cortical recycling in ventral temporal cortex. Trends in cognitive sciences Kubota, E., Grill-Spector, K., Nordt, M. 2023

    Abstract

    High-level visual areas in ventral temporal cortex (VTC) support recognition of important categories, such as faces and words. Word-selective regions are left lateralized and emerge at the onset of reading instruction. Face-selective regions are right lateralized and have been documented in infancy. Prevailing theories suggest that face-selective regions become right lateralized due to competition with word-selective regions in the left hemisphere. However, recent longitudinal studies examining face- and word-selective responses in childhood do not provide support for this theory. Instead, there is evidence that word representations recycle cortex previously involved in processing other stimuli, such as limbs. These findings call for more longitudinal investigations of cortical recycling and a new era of work that links visual experience and behavior with neural responses.

    View details for DOI 10.1016/j.tics.2023.09.006

    View details for PubMedID 37858388

  • White matter connections of high-level visual areas predict cytoarchitecture better than category-selectivity in childhood, but not adulthood. Cerebral cortex (New York, N.Y. : 1991) Kubota, E., Grotheer, M., Finzi, D., Natu, V. S., Gomez, J., Grill-Spector, K. 2022

    Abstract

    Ventral temporal cortex (VTC) consists of high-level visual regions that are arranged in consistent anatomical locations across individuals. This consistency has led to several hypotheses about the factors that constrain the functional organization of VTC. A prevailing theory is that white matter connections influence the organization of VTC, however, the nature of this constraint is unclear. Here, we test 2 hypotheses: (1) white matter tracts are specific for each category or (2) white matter tracts are specific to cytoarchitectonic areas of VTC. To test these hypotheses, we used diffusion magnetic resonance imaging to identify white matter tracts and functional magnetic resonance imaging to identify category-selective regions in VTC in children and adults. We find that in childhood, white matter connections are linked to cytoarchitecture rather than category-selectivity. In adulthood, however, white matter connections are linked to both cytoarchitecture and category-selectivity. These results suggest a rethinking of the view that category-selective regions in VTC have category-specific white matter connections early in development. Instead, these findings suggest that the neural hardware underlying the processing of categorical stimuli may be more domain-general than previously thought, particularly in childhood.

    View details for DOI 10.1093/cercor/bhac221

    View details for PubMedID 35671505

  • Establishing the functional relevancy of white matter connections in the visual system and beyond. Brain structure & function Grotheer, M., Kubota, E., Grill-Spector, K. 2021

    Abstract

    For over a century, researchers have examined the functional relevancy of white matter bundles. Consequently, many large-scale bundles spanning several centimeters have been associated in their entirety with specific brain functions, such as language or attention. However, these coarse structural-functional relationships are at odds with modern understanding of the fine-grained functional organization of human cortex, such as the mosaic of category-selective regions in ventral temporal cortex. Here, we review a multimodal approach that combines fMRI to define functional regions of interest within individual's brains with dMRI tractography to identify the white matter bundles of the same individual. Combining these data allows to determine which subsets of streamlines within a white matter bundle connect to specific functional regions in each individual. That is, this approach identifies the functionally defined white matter sub-bundles of the brain. We argue that this approach not only enhances the accuracy of interpreting the functional relevancy of white matter bundles, but also enables segmentation of these large-scale bundles into meaningful functional units, which can then be linked to behavior with enhanced precision. Importantly, this approach has the potential for making new discoveries of the fine-grained functional relevancy of white matter connections in the visual system and the brain more broadly, akin to the flurry of research that has identified functional regions in cortex.

    View details for DOI 10.1007/s00429-021-02423-4

    View details for PubMedID 34846595