All Publications


  • IL1RN Variation Influences Both Disease Susceptibility and Response to Recombinant Human Interleukin-1 Receptor Antagonist Therapy in Systemic Juvenile Idiopathic Arthritis ARTHRITIS & RHEUMATOLOGY Arthur, V. L., Shuldiner, E., Remmers, E. F., Hinks, A., Grom, A. A., Foell, D., Martini, A., Gattorno, M., Ozen, S., Prahalad, S., Zeft, A. S., Bohnsack, J. F., Ilowite, N. T., Mellins, E. D., Russo, R., Len, C., Oliveira, S., Yeung, R. M., Rosenberg, A. M., Wedderburn, L. R., Anton, J., Haas, J., Roesen-Wolff, A., Minden, K., Szymanski, A., Thomson, W., Kastner, D. L., Woo, P., Ombrello, M. J., INCHARGE Consortium 2018; 70 (8): 1319–30

    Abstract

    To determine whether systemic juvenile idiopathic arthritis (JIA) susceptibility loci that were identified by candidate gene studies demonstrate association with systemic JIA in the largest study population assembled to date.Single-nucleotide polymorphisms (SNPs) from 11 previously reported systemic JIA risk loci were examined for association in 9 populations, including 770 patients with systemic JIA and 6,947 controls. The effect of systemic JIA-associated SNPs on gene expression was evaluated in silico in paired whole genome and RNA sequencing data from the lymphoblastoid cell lines (LCLs) of 373 European subjects from the 1000 Genomes Project. Responses of systemic JIA-associated SNPs to anakinra treatment were evaluated in 38 US patients for whom treatment response data were available.We found no association between the previously reported 26 SNPs and systemic JIA. Expanded analysis of the regions containing the 26 SNPs revealed only 1 significant association: the promoter region of IL1RN (P < 1 × 10-4 ). Systemic JIA-associated SNPs correlated with IL1RN expression in LCLs, with an inverse correlation between systemic JIA risk and IL1RN expression. The presence of homozygous IL1RN high expression alleles correlated strongly with a lack of response to anakinra therapy (odds ratio 28.7 [95% confidence interval 3.2-255.8]).In our study, IL1RN was the only candidate locus associated with systemic JIA. The implicated SNPs are among the strongest known determinants of IL1RN and interleukin-1 receptor antagonist levels, linking low expression with increased systemic JIA risk. Homozygous high expression alleles predicted nonresponsiveness to anakinra therapy, making them ideal candidate biomarkers to guide systemic JIA treatment. This study is an important first step toward the personalized treatment of systemic JIA.

    View details for PubMedID 29609200

  • Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications ANNALS OF THE RHEUMATIC DISEASES Ombrello, M. J., Arthur, V. L., Remmers, E. F., Hinks, A., Tachmazidou, I., Grom, A. A., Foell, D., Martini, A., Gattorno, M., Ozen, S., Prahalad, S., Zeft, A. S., Bohnsack, J. F., Ilowite, N. T., Mellins, E. D., Russo, R., Len, C., Hilario, M. O., Oliveira, S., Yeung, R. S., Rosenberg, A. M., Wedderburn, L. R., Anton, J., Haas, J., Rosen-Wolff, A., Minden, K., Tenbrock, K., Demirkaya, E., Cobb, J., Baskin, E., Signa, S., Shuldiner, E., Duerr, R. H., Achkar, J., Kamboh, M. I., Kaufman, K. M., Kottyan, L. C., Pinto, D., Scherer, S. W., Alarcon-Riquelme, M. E., Docampo, E., Estivill, X., Gul, A., Langefeld, C. D., Thompson, S., Zeggini, E., Kastner, D. L., Woo, P., Thomson, W. 2017; 76 (5)

    Abstract

    Juvenile idiopathic arthritis (JIA) is a heterogeneous group of conditions unified by the presence of chronic childhood arthritis without an identifiable cause. Systemic JIA (sJIA) is a rare form of JIA characterised by systemic inflammation. sJIA is distinguished from other forms of JIA by unique clinical features and treatment responses that are similar to autoinflammatory diseases. However, approximately half of children with sJIA develop destructive, long-standing arthritis that appears similar to other forms of JIA. Using genomic approaches, we sought to gain novel insights into the pathophysiology of sJIA and its relationship with other forms of JIA.We performed a genome-wide association study of 770 children with sJIA collected in nine countries by the International Childhood Arthritis Genetics Consortium. Single nucleotide polymorphisms were tested for association with sJIA. Weighted genetic risk scores were used to compare the genetic architecture of sJIA with other JIA subtypes.The major histocompatibility complex locus and a locus on chromosome 1 each showed association with sJIA exceeding the threshold for genome-wide significance, while 23 other novel loci were suggestive of association with sJIA. Using a combination of genetic and statistical approaches, we found no evidence of shared genetic architecture between sJIA and other common JIA subtypes.The lack of shared genetic risk factors between sJIA and other JIA subtypes supports the hypothesis that sJIA is a unique disease process and argues for a different classification framework. Research to improve sJIA therapy should target its unique genetics and specific pathophysiological pathways.

    View details for DOI 10.1136/annrheumdis-2016-210324

    View details for Web of Science ID 000398387200021

  • Structural variants in genes associated with human Williams-Beuren syndrome underlie stereotypical hypersociability in domestic dogs. Science advances vonHoldt, B. M., Shuldiner, E., Koch, I. J., Kartzinel, R. Y., Hogan, A., Brubaker, L., Wanser, S., Stahler, D., Wynne, C. D., Ostrander, E. A., Sinsheimer, J. S., Udell, M. A. 2017; 3 (7): e1700398

    Abstract

    Although considerable progress has been made in understanding the genetic basis of morphologic traits (for example, body size and coat color) in dogs and wolves, the genetic basis of their behavioral divergence is poorly understood. An integrative approach using both behavioral and genetic data is required to understand the molecular underpinnings of the various behavioral characteristics associated with domestication. We analyze a 5-Mb genomic region on chromosome 6 previously found to be under positive selection in domestic dog breeds. Deletion of this region in humans is linked to Williams-Beuren syndrome (WBS), a multisystem congenital disorder characterized by hypersocial behavior. We associate quantitative data on behavioral phenotypes symptomatic of WBS in humans with structural changes in the WBS locus in dogs. We find that hypersociability, a central feature of WBS, is also a core element of domestication that distinguishes dogs from wolves. We provide evidence that structural variants in GTF2I and GTF2IRD1, genes previously implicated in the behavioral phenotype of patients with WBS and contained within the WBS locus, contribute to extreme sociability in dogs. This finding suggests that there are commonalities in the genetic architecture of WBS and canine tameness and that directional selection may have targeted a unique set of linked behavioral genes of large phenotypic effect, allowing for rapid behavioral divergence of dogs and wolves, facilitating coexistence with humans.

    View details for PubMedID 28776031