Stanford Advisors

All Publications

  • Lipid-Based Self-Microemulsion of Niclosamide Achieved Enhanced Oral Delivery and Anti-Tumor Efficacy in Orthotopic Patient-Derived Xenograft of Hepatocellular Carcinoma in Mice. International journal of nanomedicine Liu, Y., Guerrero, D. Q., Lechuga-Ballesteros, D., Tan, M., Ahmad, F., Aleiwi, B., Ellsworth, E. L., Chen, B., Chua, M., So, S. 2024; 19: 2639-2653


    Introduction: We previously identified niclosamide as a promising repurposed drug candidate for hepatocellular carcinoma (HCC) treatment. However, it is poorly water soluble, limiting its tissue bioavailability and clinical application. To overcome these challenges, we developed an orally bioavailable self-microemulsifying drug delivery system encapsulating niclosamide (Nic-SMEDDS).Methods: Nic-SMEDDS was synthesized and characterized for its physicochemical properties, in vivo pharmacokinetics and absorption mechanisms, and in vivo therapeutic efficacy in an orthotopic patient-derived xenograft (PDX)-HCC mouse model. Niclosamide ethanolamine salt (NEN), with superior water solubility, was used as a positive control.Results: Nic-SMEDDS (5.6% drug load) displayed favorable physicochemical properties and drug release profiles in vitro. In vivo, Nic-SMEDDS displayed prolonged retention time and plasma release profile compared to niclosamide or NEN. Oral administration of Nic-SMEDDS to non-tumor bearing mice improved niclosamide bioavailability and Cmax by 4.1- and 1.8-fold, respectively, compared to oral niclosamide. Cycloheximide pre-treatment blocked niclosamide absorption from orally administered Nic-SMEDDS, suggesting that its absorption was facilitated through the chylomicron pathway. Nic-SMEDDS (100 mg/kg, bid) showed greater anti-tumor efficacy compared to NEN (200 mg/kg, qd); this correlated with higher levels (p < 0.01) of niclosamide, increased caspase-3, and decreased Ki-67 in the harvested PDX tissues when Nic-SMEDDS was given. Biochemical analysis at the treatment end-point indicated that Nic-SMEDDS elevated lipid levels in treated mice.Conclusion: We successfully developed an orally bioavailable formulation of niclosamide, which significantly enhanced oral bioavailability and anti-tumor efficacy in an HCC PDX mouse model. Our data support its clinical translation for the treatment of solid tumors.

    View details for DOI 10.2147/IJN.S442143

    View details for PubMedID 38500681

  • Identification and validation of microtubule depolymerizing agent, CYT997, as a potential drug candidate for hepatocellular carcinoma. Liver international : official journal of the International Association for the Study of the Liver Ahmad, F., Ma, L., Wei, W., Liu, Y., Hakim, I., Daugherty, A., Mujahid, S., Radin, A. A., Chua, M., So, S. 2023


    BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is a typically fatal malignancy with limited treatment options and poor survival rates, despite recent FDA approvals of newer treatment options. We aim to address this unmet need by using a proprietary computational drug discovery platform that identifies drug candidates with the potential to advance rapidly and successfully through preclinical studies.METHODS: We generated an in silico model of HCC biology to identify the top 10 small molecules with predicted efficacy. The most promising candidate, CYT997, was tested for its invitro effects on cell viability and cell death, colony formation, cell cycle changes, and cell migration/invasion in HCC cells. We used an HCC patient-derived xenograft (PDX) mouse model to assess its invivo efficacy.RESULTS: CYT997 was significantly more cytotoxic against HCC cells than against primary human hepatocytes, and sensitized HCC cells to sorafenib. It arrested cell cycle at the G2/M phase with associated up-regulations of p21, p-MEK1/2, p-ERK, and down-regulation of cyclin B1. Cell apoptosis and senescence-like morphology were also observed. CYT997 inhibited HCC cell migration and invasion, and down-regulated the expressions of acetylated tubulins, beta-tubulin, glypican-3 (GPC3), beta-catenin, and c-Myc. Invivo, CYT997 (20mg/kg, three times weekly by oral gavage) significantly inhibited PDX growth, while being non-toxic to mice. Immunohistochemistry confirmed the down-regulation of GPC3, c-Myc, and Ki-67, supporting its anti-proliferative effect.CONCLUSION: CYT997 is a potentially efficacious and non-toxic drug candidate for HCC therapy. Its ability to down-regulate GPC3, beta-catenin, and c-Myc highlights a novel mechanism of action.

    View details for DOI 10.1111/liv.15756

    View details for PubMedID 37833852