Farshad Moradi
Clinical Associate Professor, Radiology - Rad/Nuclear Medicine
Clinical Focus
- Diagnostic Radiology
- Positron-Emission Tomography
- Nuclear Radiology
Administrative Appointments
-
Modality Director, Nuclear Medicine (2020 - Present)
Professional Education
-
Residency: UCSD Dept of Radiology (2014) CA
-
Board Certification: American Board of Radiology, Diagnostic Radiology (2015)
-
Fellowship: Stanford University Radiology Fellowships (2015) CA
-
Board Certification: American Board of Nuclear Medicine, Nuclear Medicine (2015)
-
Internship: University of Massachusetts Internal Medicine Residency (2009) MA
-
PhD, California Institute of Technology, Computation and Neural Systems (2007)
-
Medical Education: Tehran University of Medical Sciences (2000) Iran
All Publications
-
The Challenge of External Generalisability: Insights from the Bicentric Validation of a [68Ga]Ga-PSMA-11 PET Based Radiomics Signature for Primary Prostate Cancer Characterisation Using Histopathology as Reference.
Cancers
2024; 16 (23)
Abstract
Background: PSMA PET radiomics is a promising tool for primary prostate cancer (PCa) characterisation. However, small single-centre studies and lack of external validation hinder definitive conclusions on the potential of PSMA PET radiomics in the initial workup of PCa. We aimed to validate a radiomics signature in a larger internal cohort and in an external cohort from a separate centre. Methods: One hundred and twenty-seven PCa patients were retrospectively enrolled across two independent hospitals. The first centre (IRCCS San Raffaele Scientific Institute, Centre 1) contributed 62 [68Ga]Ga-PSMA-11 PET scans, 20 patients classified as low-grade (ISUP grade < 4), and 42 as high-grade (ISUP grade ≥ 4). The second centre (Stanford University Hospital, Centre 2) provided 65 [68Ga]Ga-PSMA-11 PET scans, and 49 low-grade and 16 high-grade patients. A radiomics model previously generated in Centre 1 was tested on the two cohorts separately and afterward on the entire dataset. Then, we evaluated whether the radiomics features selected in the previous investigation could generalise to new data. Several machine learning (ML) models underwent training and testing using 100-fold Monte Carlo cross-validation, independently at both Centre 1 and Centre 2, with a 70-30% train-test split. Additionally, models were trained in one centre and tested in the other, and vice versa. Furthermore, data from both centres were combined for training and testing using Monte Carlo cross-validation. Finally, a new radiomics signature built on this bicentric dataset was proposed. Several performance metrics were computed. Results: The previously generated radiomics signature resulted in an area under the receiver operating characteristic curve (AUC) of 80.4% when tested on Centre 1, while it generalised poorly to Centre 2, where it reached an AUC of 62.7%. When the whole cohort was considered, AUC was 72.5%. Similarly, new ML models trained on the previously selected features yielded, at best, an AUC of 80.9% for Centre 1 and performed at chance for Centre 2 (AUC of 49.3%). A new signature built on this bicentric dataset reached, at best, an average AUC of 91.4% in the test set. Conclusions: The satisfying performance of radiomics models when used in the original development settings, paired with the poor performance otherwise observed, emphasises the need to consider centre-specific factors and dataset characteristics when developing radiomics models. Combining radiomics datasets is a viable strategy to reduce such centre-specific biases, but external validation is still needed.
View details for DOI 10.3390/cancers16234103
View details for PubMedID 39682289
-
Applying Staging PSMA PET/CT in De Novo Metastatic Hormonal Sensitive Prostate Cancer (mHSPC): A Preliminary Single-Center Retrospective Review of Clinical Outcomes
SOC NUCLEAR MEDICINE INC. 2024
View details for Web of Science ID 001289165604031
-
Automated assessment of oncological FDG PET/CT or PET/MR image quality with deep learning
SOC NUCLEAR MEDICINE INC. 2024
View details for Web of Science ID 001289165601099
-
Can PET image quality be monitored in real time? Prediction of oncological FDG PET image quality using Fast List-Mode Reconstruction of short PET Frames and Deep Learning
SOC NUCLEAR MEDICINE INC. 2024
View details for Web of Science ID 001289165601100
-
Artificial Intelligence-Driven Model for Prostate Cancer Staging with PSMA PET: A Study Integrating Radiomics Features and SVM Classifier
SOC NUCLEAR MEDICINE INC. 2024
View details for Web of Science ID 001289165602002
-
Prospective Comparison of 68Ga-NeoB and 68Ga-PSMA-R2 PET/MRI in Patients with Biochemically Recurrent Prostate Cancer.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
2024
Abstract
Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptors are both overexpressed in prostate cancer (PC) but may provide complementary information.68Ga-PSMA-R2 and 68Ga-NeoB (DOTA-p-aminomethylaniline-diglycolic acid-DPhe-Gln-Trp-Ala-Val-Gly-His-NH-CH[CH2-CH(CH3)2]2) are novel PET radiopharmaceuticals that were developed for theranostic use. In this phase II imaging study, we assessed the feasibility, safety, and diagnostic performance of 68Ga-NeoB and 68Ga-PSMA-R2 PET/MRI for detection of biochemically recurrent PC. Methods: We prospectively enrolled 27 men with suspected biochemically recurrent PC after initial treatment but noncontributory conventional imaging results (negative or equivocal findings on MRI, CT, and/or bone scan). Participants underwent 68Ga-NeoB and 68Ga-PSMA-R2 PET/MRI within 2 wk in noncontrolled order. The SUVmax of putative PC lesions was measured and compared with a composite reference standard (histopathology, follow-up imaging, prostate-specific antigen change). The SUVmax and SUVmean of background organs were measured. Vital signs were recorded before injection of the radiopharmaceuticals and after the scans. Adverse events were recorded up to 72 h after each scan. Results: The prostate-specific antigen level at enrollment was 3.5 ± 3.9 ng/mL (range, 0.3-13.5 ng/mL). 68Ga-NeoB PET/MRI detected 31 lesions in 18 patients (66.7%), whereas 68Ga-PSMA-R2 identified 20 lesions in 15 participants (55.6%). 68Ga-NeoB PET/MRI showed higher sensitivity (85.7% vs. 71.4%), accuracy (88.9% vs. 77.8%), and negative predictive value (66.7% vs. 50.0%) than 68Ga-PSMA-R2, whereas specificity and positive predictive value were equally high (100.0% for both). In 6 patients, 68Ga-NeoB PET/MRI identified 14 lesions that were false-negative on 68Ga-PSMA-R2 PET/MRI. The mean lesion SUVmax was 6.6 ± 3.2 (range, 2.9-13.2) for 68Ga-NeoB and 4.4 ± 1.5 (range, 2.6-8.8) for 68Ga-PSMA-R2 (P = 0.019). Overall lower uptake was noted in tumors and background organs for 68Ga-PSMA-R2. There were no significant changes in vital signs before and after the scans. No adverse events were reported in the 72-h period after scans. Conclusion: 68Ga-NeoB and 68Ga-PSMA-R2 are safe for diagnostic imaging. 68Ga-NeoB PET/MRI showed better diagnostic performance than 68Ga-PSMA-R2. 68Ga-PSMA-R2 showed overall lower uptake, equally in background organs and tumors, and might therefore not be an ideal theranostic compound. Further evaluation in larger cohorts is needed to confirm our preliminary data.
View details for DOI 10.2967/jnumed.123.267017
View details for PubMedID 38664016
-
Same-day post-therapy imaging with a new generation whole-body digital SPECT/CT in assessing treatment response to [177Lu]Lu-PSMA-617 in metastatic castration-resistant prostate cancer.
European journal of nuclear medicine and molecular imaging
2024
Abstract
PURPOSE: Lutetium-177 [177Lu]Lu-PSMA-617 radioligand therapy (RLT) represents a significant advancement for metastatic castration-resistant prostate cancer (mCRPC), demonstrating improvements in radiographic progression free survival (rPFS) and overall survival (OS) with a low rate of associated side effects. Currently, most post-therapy SPECT/CT is conducted at 24h after infusion. This study examines the clinical utility of a next-generation multi-detector Cadmium-Zinc-Telluride (CZT) SPECT/CT system (StarGuide) in same-day post-infusion assessment and early treatment response to [177Lu]Lu-PSMA-617.METHODS: In this retrospective study, 68 men with progressive mCRPC treated with [177Lu]Lu-PSMA-617 at our center from June 2022 to June 2023 were evaluated. Digital whole-body SPECT/CT imaging was performed after [177Lu]Lu-PSMA-617infusion (mean±SD: 1.8±0.6h, range 1.1-4.9h). Quantitative analysis of [177Lu]Lu-PSMA-617 positive lesions was performed in patients who underwent at least 2 post-therapy SPECT/CT, using liver parenchyma uptake as reference. Metrics including [177Lu]Lu-PSMA-617 positive total tumor volume (Lu-TTV), SUVmax and SUVmean were calculated. These quantitative metrics on post-infusion SPECT/CT images after cycles 1, 2 and 3 were correlated with overall survival (OS), prostate specific antigen-progression free survival (PSA-PFS) as defined by prostate cancer working group 3 (PCWG3), and PSA decrease over 50% (PSA50) response rates.RESULTS: 56 patients (means age 76.2±8.1 years, range: 60-93) who underwent at least 2 post-therapy SPECT/CT were included in the image analysis. The whole-body SPECT/CT scans (~12min per scan) were well tolerated, with 221 same-day scans performed (89%). At a median of 10-months follow-up, 33 (58.9%) patients achieved PSA50 after [177Lu]Lu-PSMA-617 treatment and median PSA-PFS was 5.0 months (range: 1.0-15 months) while median OS was not reached. Quantitative analysis of SPECT/CT images showed that 37 patients (66%) had>30% reduction in Lu-TTV, associated with significantly improved overall survival (median not reached vs. 6 months, P=0.008) and PSA-PFS (median 6 months vs. 1 months, P<0.001). However, changes in SUVmax or SUVmean did not correlate with PSA-PFS or OS.CONCLUSION: We successfully implemented same-day post-therapy SPECT/CT after [177Lu]Lu-PSMA-617 infusions. Quantitation of 1-2h post-therapy SPECT/CT images is a promising method for assessing treatment response. However, the approach is currently limited by its suboptimal detection of small tumor lesions and the necessity of incorporating a third-cycle SPECT/CT to mitigate the effects of any potential treatment-related flare-up. Further investigation in a larger patient cohort and prospective validation is essential to confirm these findings and to explore the role of SPECT/CT as a potential adjunct to PSMA PET/CT in managing mCRPC.
View details for DOI 10.1007/s00259-024-06718-6
View details for PubMedID 38635050
-
68Ga-RM2 PET-MRI versus MRI alone for evaluation of patients with biochemical recurrence of prostate cancer: a single-centre, single-arm, phase 2/3 imaging trial.
The Lancet. Oncology
2024
Abstract
National Comprehensive Cancer Network guidelines include prostate-specific membrane antigen (PSMA)-targeted PET for detection of biochemical recurrence of prostate cancer. However, targeting a single tumour characteristic might not be sufficient to reflect the full extent of disease. Gastrin releasing peptide receptors (GRPR) have been shown to be overexpressed in prostate cancer. In this study, we aimed to evaluate the diagnostic performance of the GRPR-targeting radiopharmaceutical 68Ga-RM2 in patients with biochemical recurrence of prostate cancer.This single-centre, single-arm, phase 2/3 trial was done at Stanford University (USA). Adult patients (aged ≥18 years) with biochemical recurrence of prostate cancer, a Karnofsky performance status of 50 or higher, increasing prostate-specific antigen concentration 0·2 ng/mL or more after prostatectomy or 2 ng/mL or more above nadir after radiotherapy, and non-contributory conventional imaging (negative CT or MRI, and bone scan) were eligible. All participants underwent 68Ga-RM2 PET-MRI. The primary outcome was the proportion of patients with PET-positive findings on 68Ga-RM2 PET-MRI compared with MRI alone after initial therapy, at a per-patient and per-lesion level. The primary outcome would be considered met if at least 30% of patients had one or more lesions detected by 68Ga-RM2 PET-MRI and the detection by 68Ga-RM2 PET-MRI was significantly greater than for MRI. Each PET scan was interpreted by three independent masked readers using a standardised evaluation criteria. This study is registered with ClinicalTrials.gov, NCT02624518, and is complete.Between Dec 12, 2015, and July 27, 2021, 209 men were screened for eligibility, of whom 100 were included in analyses. Median follow-up was 49·3 months (IQR 36·7-59·2). The primary endpoint was met; 68Ga-RM2 PET-MRI was positive in 69 (69%) patients and MRI alone was positive in 40 (40%) patients (p<0·0001). In the per-lesion analysis 68Ga-RM2 PET-MRI showed significantly higher detection rates than MRI alone (143 vs 96 lesions; p<0·0001). No grade 1 or worse events were reported.68Ga-RM2 PET-MRI showed better diagnostic performance than MRI alone in patients with biochemical recurrence of prostate cancer. Further prospective comparative studies with PSMA-targeted PET are needed to gain a better understanding of GRPR and PSMA expression patterns in these patients.The US Department of Defense.
View details for DOI 10.1016/S1470-2045(24)00069-X
View details for PubMedID 38423030
-
Total and anatomically contextualized quantitative <SUP>18</SUP>F-DCFPyL PET at biochemical recurrence to predict subsequent biochemical progression-free survival in patients with prostate cancer.
LIPPINCOTT WILLIAMS & WILKINS. 2024: 33
View details for DOI 10.1200/JCO.2024.42.4_suppl.33
View details for Web of Science ID 001266676900393
-
Assessing the clinical utility of rapid post-therapy whole-body digital SPECT/CT in evaluating early treatment response of <SUP>177</SUP>Lu-PSMA-617 treatment.
LIPPINCOTT WILLIAMS & WILKINS. 2024: 32
View details for DOI 10.1200/JCO.2024.42.4_suppl.32
View details for Web of Science ID 001266676900643
-
PET Imaging of Neuroinflammation in ALS Patients Using <SUP>18</SUP>F-OP-801, a Novel Nanoimaging Agent
WILEY. 2023: S246
View details for Web of Science ID 001084474200444
-
Modified PROMISE criteria for standardized interpretation of gastrin-releasing peptide receptor (GRPR)-targeted PET.
European journal of nuclear medicine and molecular imaging
2023
Abstract
There are image interpretation criteria to standardize reporting prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET). As up to 10% of prostate cancer (PC) do not express PSMA, other targets such as gastrin-releasing peptide receptor (GRPR) are evaluated. Research on GRPR-targeted imaging has been slowly increasing in usage at staging and biochemical recurrence (BCR) of PC. We therefore propose a modification of the Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria (mPROMISE) for GRPR-targeted PET.[68 Ga]Ga-RM2 PET data from initially prospective studies performed at our institution were retrospectively reviewed: 44 patients were imaged for staging and 100 patients for BCR PC. Two nuclear medicine physicians independently evaluated PET according to the mPROMISE criteria. A third expert reader served as standard reference. Interreader reliability was computed for GRPR expression, prostate bed (T), lymph node (N), skeleton (Mb), organ (Mc) metastases, and final judgment of the scan.The interrater reliability for GRPR PET at staging was moderate for GRPR expression (0.59; 95% confidence interval [CI] 0.40, 0.78), substantial for T-stage (0.78; 95% CI 0.63, 0.94), and almost perfect for N-stage (0.97; 95% CI 0.92, 1.00) and final judgment (0.92; 95% CI 0.82, 1.00). The interreader agreement at BCR showed substantial agreement for GRPR expression (0.70; 95% CI 0.59, 0.81) and final judgment (0.65; 95% CI 0.53, 0.78), while almost perfect agreement was seen across the major categories (T, N, Mb, Mc). Acceptable performance of the mPROMISE criteria was found for all subsets when compared to the standard reference.Interpreting GRPR-targeted PET using the mPROMISE criteria showed its reliability with substantial or almost perfect interrater agreement across all major categories. The proposed modification of the PROMISE criteria will aid clinicians in decreasing the level of uncertainty, and clinical trials to achieve uniform evaluation, reporting, and comparability of GRPR-targeted PET.Clinicaltrials.gov Identifier: NCT03113617 and NCT02624518.
View details for DOI 10.1007/s00259-023-06385-z
View details for PubMedID 37555901
View details for PubMedCentralID 9635676
-
Clinical Radiosynthesis and Translation of [18F]OP-801: A Novel Radiotracer for Imaging Reactive Microglia and Macrophages.
ACS chemical neuroscience
2023
Abstract
Positron emission tomography (PET) is a powerful tool for studying neuroinflammatory diseases; however, current PET biomarkers of neuroinflammation possess significant limitations. We recently reported a promising dendrimer PET tracer ([18F]OP-801), which is selectively taken up by reactive microglia and macrophages. Here, we describe further important characterization of [18F]OP-801 in addition to optimization and validation of a two-step clinical radiosynthesis. [18F]OP-801 was found to be stable in human plasma for 90 min post incubation, and human dose estimates were calculated for 24 organs of interest; kidneys and urinary bladder wall without bladder voiding were identified as receiving the highest absorbed dose. Following optimization detailed herein, automated radiosynthesis and quality control (QC) analyses of [18F]OP-801 were performed in triplicate in suitable radiochemical yield (6.89 ± 2.23% decay corrected), specific activity (37.49 ± 15.49 GBq/mg), and radiochemical purity for clinical imaging. Importantly, imaging mice with tracer (prepared using optimized methods) 24 h following the intraperitoneal injection of liposaccharide resulted in the robust brain PET signal. Cumulatively, these data enable clinical translation of [18F]OP-801 for imaging reactive microglia and macrophages in humans. Data from three validation runs of the clinical manufacturing and QC were submitted to the Food and Drug Administration (FDA) as part of a Drug Master File (DMF). Subsequent FDA approval to proceed was obtained, and a phase 1/2 clinical trial (NCT05395624) for first-in-human imaging in healthy controls and patients with amyotrophic lateral sclerosis is underway.
View details for DOI 10.1021/acschemneuro.3c00028
View details for PubMedID 37310119
-
Total and anatomically contextualized quantitative 18F-DCFPyL PET at biochemical recurrence to predict subsequent biochemical progression free survival in patients with prostate cancer
LIPPINCOTT WILLIAMS & WILKINS. 2023
View details for Web of Science ID 001053772002474
-
Predicting FDG-PET Images From Multi-Contrast MRI Using Deep Learning in Patients With Brain Neoplasms.
Journal of magnetic resonance imaging : JMRI
2023
Abstract
18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is valuable for determining presence of viable tumor, but is limited by geographical restrictions, radiation exposure, and high cost.To generate diagnostic-quality PET equivalent imaging for patients with brain neoplasms by deep learning with multi-contrast MRI.Retrospective.Patients (59 studies from 51 subjects; age 56 ± 13 years; 29 males) who underwent 18 F-FDG PET and MRI for determining recurrent brain tumor.3T; 3D GRE T1, 3D GRE T1c, 3D FSE T2-FLAIR, and 3D FSE ASL, 18 F-FDG PET imaging.Convolutional neural networks were trained using four MRIs as inputs and acquired FDG PET images as output. The agreement between the acquired and synthesized PET was evaluated by quality metrics and Bland-Altman plots for standardized uptake value ratio. Three physicians scored image quality on a 5-point scale, with score ≥3 as high-quality. They assessed the lesions on a 5-point scale, which was binarized to analyze diagnostic consistency of the synthesized PET compared to the acquired PET.The agreement in ratings between the acquired and synthesized PET were tested with Gwet's AC and exact Bowker test of symmetry. Agreement of the readers was assessed by Gwet's AC. P = 0.05 was used as the cutoff for statistical significance.The synthesized PET visually resembled the acquired PET and showed significant improvement in quality metrics (+21.7% on PSNR, +22.2% on SSIM, -31.8% on RSME) compared with ASL. A total of 49.7% of the synthesized PET were considered as high-quality compared to 73.4% of the acquired PET which was statistically significant, but with distinct variability between readers. For the positive/negative lesion assessment, the synthesized PET had an accuracy of 87% but had a tendency to overcall.The proposed deep learning model has the potential of synthesizing diagnostic quality FDG PET images without the use of radiotracers.3 TECHNICAL EFFICACY: Stage 2.
View details for DOI 10.1002/jmri.28837
View details for PubMedID 37259967
-
Rapid dynamic reconstruction using list mode data for monitoring PET image quality accurately predicts final image noise and perceived quality
SOC NUCLEAR MEDICINE INC. 2023
View details for Web of Science ID 001109210200126
-
A Case-Based Primer on FDG PET/CT for Imaging Cardiovascular Infections: Protocol, Interpretation, and Pitfalls.
SOC NUCLEAR MEDICINE INC. 2023
View details for Web of Science ID 001109210201036
-
Total and Anatomically Contextualized Quantitative 18F-DCFPyL PET at biochemical recurrence predicts subsequent biochemical progression free survival in prostate cancer patients
SOC NUCLEAR MEDICINE INC. 2023
View details for Web of Science ID 001109210201271
-
Final Analysis of a Prospective, Single-center, Phase II/III Imaging Trial of 68Ga-RM2 PET/MRI in Patients with Biochemical Recurrence of Prostate Cancer
SOC NUCLEAR MEDICINE INC. 2023
View details for Web of Science ID 001109210201177
-
Modified PROMISE Criteria for Standardized Interpretation of Gastrin Releasing Peptide Receptor (GRPR)-targeted PET
SOC NUCLEAR MEDICINE INC. 2023
View details for Web of Science ID 001109210201173
-
SPECT at the speed of PET: a feasibility study of CZT-based whole-body SPECT/CT in the post 177Lu-DOTATATE and 177Lu-PSMA617 setting.
European journal of nuclear medicine and molecular imaging
2023
Abstract
To evaluate the feasibility of using the StarGuide (General Electric Healthcare, Haifa, Israel), a new generation multi-detector cadmium-zinc-telluride (CZT)-based SPECT/CT, for whole-body imaging in the setting of post-therapy imaging of 177Lu-labeled radiopharmaceuticals.Thirty-one patients (34-89 years old; mean ± SD, 65.5 ± 12.1) who were treated with either 177Lu-DOTATATE (n=17) or 177Lu-PSMA617 (n=14) as part of standard of care were scanned post-therapy with the StarGuide; some were also scanned with the standard GE Discovery 670 Pro SPECT/CT. All patients had either 64Cu-DOTATATE or 18F-DCFPyL PET/CT prior to first cycle of therapy for eligibility check. The detection/targeting rate (lesion uptake greater than blood pool uptake) of large lesions meeting RECIST 1.1 size criteria on post-therapy StarGuide SPECT/CT was evaluated and compared to the standard design GE Discovery 670 Pro SPECT/CT (when available) and pre-therapy PET by two nuclear medicine physicians with consensus read.This retrospective analysis identified a total of 50 post-therapy scans performed with the new imaging protocol from November 2021 to August 2022. The StarGuide system acquired vertex to mid-thighs post-therapy SPECT/CT scans with 4 bed positions, 3 min/bed and a total scan time of 12 min. In comparison, the standard GE Discovery 670 Pro SPECT/CT system typically acquires images in 2 bed positions covering the chest, abdomen, and pelvis with a total scan time of 32 min. The pre-therapy 64Cu-DOTATATE PET takes 20 min with 4 bed positions on GE Discovery MI PET/CT, and 18F-DCFPyL PET takes 8-10 min with 4-5 bed positions on GE Discovery MI PET/CT. This preliminary evaluation showed that the post-therapy scans acquired with faster scanning time using StarGuide system had comparable detection/targeting rate compared to the Discovery 670 Pro SPECT/CT system and detected large lesions defined by RECIST criteria on the pre-therapy PET scans.Fast acquisition of whole-body post-therapy SPECT/CT is feasible with the new StarGuide system. Short scanning time improves the patients' clinical experience and compliance which may lead to increased adoption of post-therapy SPECT. This opens the possibility to offer imaged-based treatment response assessment and personalized dosimetry to patients referred for targeted radionuclide therapies.
View details for DOI 10.1007/s00259-023-06176-6
View details for PubMedID 36869177
View details for PubMedCentralID 6667427
-
Retroperitoneal Inflammation Detected on FDG PET/CT in Patient on Long-Term Immunotherapy.
Clinical nuclear medicine
2023
Abstract
ABSTRACT: A 68-year-old man with a history of pulmonary adenocarcinoma on maintenance pembrolizumab presented for surveillance imaging. 18F-FDG PET/CT demonstrated new ill-defined right retroperitoneal and presacral soft tissue stranding with associated FDG uptake suggestive of inflammation. Biopsy results revealed fibroadipose tissue with extensive lymphoplasmacytic inflammation concerning for immunotherapy-related toxicity. The patient was subsequently taken off pembrolizumab, which he had been on for approximately 3 years. Recognition of immunotherapy-related adverse effects and how they can manifest on 18F-FDG PET/CT is important for prompt cessation of treatment.
View details for DOI 10.1097/RLU.0000000000004513
View details for PubMedID 36728374
-
A Pilot Study of 68Ga-PSMA11 and 68Ga-RM2 PET/MRI for Biopsy Guidance in Patients with Suspected Prostate Cancer.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
2022
Abstract
Purpose: Targeting of lesions seen on multiparametric MRI (mpMRI) improves prostate cancer (PC) detection at biopsy. However, 20-65% of highly suspicious lesions on mpMRI (PI-RADS 4 or 5) are false positives (FP), while 5-10% of clinically significant PC (csPC) are missed. Prostate specific membrane antigen (PSMA) and gastrin-releasing peptide receptors (GRPR) are both overexpressed in PC. We therefore aimed to evaluate the potential of 68Ga-PSMA11 and 68Ga-RM2 PET/MRI for biopsy guidance in patients with suspected PC. Methods: A highly selective cohort of 13 men, aged 58.0±7.1 years, with suspected PC (persistently high prostate-specific antigen [PSA] and PSA density) but negative or equivocal mpMRI and/or negative biopsy were prospectively enrolled to undergo 68Ga-PSMA11 and 68Ga-RM2 PET/MRI. PET/MRI included whole-body and dedicated pelvic imaging after a delay of 20 minutes. All patients had targeted biopsy of any lesions seen on PET followed by standard 12-core biopsy. Maximum standardized uptake values (SUVmax) of suspected PC lesions were collected and compared to gold standard biopsy. Results: PSA and PSA density at enrollment were 9.8±6.0 (1.5-25.5) ng/mL and 0.20±0.18 (0.06-0.68) ng/mL2, respectively. Standardized systematic biopsy revealed a total of 14 PC in 8 participants: 7 were csPC and 7 were non-clinically significant PC (ncsPC). 68Ga-PSMA11 identified 25 lesions, of which 11 (44%) were true positive (TP) (5 csPC). 68Ga-RM2 showed 27 lesions, of which 14 (52%) were TP, identifying all 7 csPC and also 7 ncsPC. There were 17 concordant lesions in 11 patients vs. 14 discordant lesions in 7 patients between 68Ga-PSMA11 and 68Ga-RM2 PET. Incongruent lesions had the highest rate of FP (12 FP vs. 2 TP). SUVmax was significantly higher for TP than FP lesions in delayed pelvic imaging for 68Ga-PSMA11 (6.49±4.14 vs. 4.05±1.55, P = 0.023) but not for whole-body images, nor for 68Ga-RM2. Conclusion: Our results show that 68Ga-PSMA11 and 68Ga-RM2 PET/MRI are feasible for biopsy guidance in suspected PC. Both radiopharmaceuticals detected additional clinically significant cancers not seen on mpMRI in this selective cohort. 68Ga-RM2 PET/MRI identified all csPC confirmed at biopsy.
View details for DOI 10.2967/jnumed.122.264448
View details for PubMedID 36396456
-
A Pilot Study of Ga-68-PSMA11 and 68Ga-RM2 PET/MRI for Biopsy Guidance in Patients with Suspected Prostate Cancer
SPRINGER. 2022: S484
View details for Web of Science ID 000857046602091
-
Posttreatment FDG-PET/CT Hopkins criteria predict locoregional recurrence after definitive radiotherapy for oropharyngeal squamous cell carcinoma.
Head & neck
2022
Abstract
BACKGROUND: Metabolic response assessment for oropharyngeal squamous cell carcinoma (OPSCC) aids in identifying locoregional persistence/recurrence (LRR). The Hopkins Criteria are a standardized qualitative response assessment system using posttreatment FDG-PET/CT.METHODS: We conducted a retrospective cohort study of patients with node-positive OPSCC treated with definitive (chemo)radiotherapy. We assessed Hopkins Criteria performance for LRR, then developed and validated a competing-risks model.RESULTS: Between 2004 and 2018, 259 patients were included with median follow-up of 43months. The Hopkins Criteria sensitivity, specificity, negative predictive value, and accuracy were 68%, 88%, 95%, and 85%. The 36-month cumulative incidence of LRR was greater with positive scores (45% vs. 5%, HR 12.60, p<0.001). PET/CTs performed ≤10weeks after radiotherapy were associated with a four-fold increase in pathologically negative biopsies/surgeries (36% vs. 9%, p=0.03). The AUC for LRR was 0.89 using a model integrating the Hopkins score.CONCLUSIONS: The Hopkins Criteria predict LRR with high accuracy for OPSCC response assessment.
View details for DOI 10.1002/hed.27160
View details for PubMedID 35920790
-
Results of First Interim Analysis of 68Ga-NeoB and 68Ga-PSMA R2 PET/MRI in Patients with Biochemically Recurrent Prostate Cancer
SOC NUCLEAR MEDICINE INC. 2022
View details for Web of Science ID 000893739700242
-
Correlation of 68Ga-RM2 PET with Post-Surgery Histopathology Findings in Patients with Newly Diagnosed Intermediate- or High-Risk Prostate Cancer.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
2022
Abstract
Rationale: 68Ga-RM2 targets gastrin-releasing peptide receptors (GRPR), which are overexpressed in prostate cancer (PC). Here, we compared pre-operative 68Ga-RM2 PET to post-surgery histopathology in patients with newly diagnosed intermediate- or high-risk PC. Methods: Forty-one men, 64.0+/-6.7-year-old, were prospectively enrolled. PET images were acquired 42 - 72 (median+/-SD 52.5+/-6.5) minutes after injection of 118.4 - 247.9 (median+/-SD 138.0+/-22.2)MBq of 68Ga-RM2. PET findings were compared to pre-operative mpMRI (n = 36) and 68Ga-PSMA11 PET (n = 17) and correlated to post-prostatectomy whole-mount histopathology (n = 32) and time to biochemical recurrence. Nine participants decided to undergo radiation therapy after study enrollment. Results: All participants had intermediate (n = 17) or high-risk (n = 24) PC and were scheduled for prostatectomy. Prostate specific antigen (PSA) was 8.8+/-77.4 (range 2.5 - 504) ng/mL, and 7.6+/-5.3 (range 2.5 - 28.0) ng/mL when excluding participants who ultimately underwent radiation treatment. Pre-operative 68Ga-RM2 PET identified 70 intraprostatic foci of uptake in 40/41 patients. Post-prostatectomy histopathology was available in 32 patients in which 68Ga-RM2 PET identified 50/54 intraprostatic lesions (detection rate = 93%). 68Ga-RM2 uptake was recorded in 19 non-enlarged pelvic lymph nodes in 6 patients. Pathology confirmed lymph node metastases in 16 lesions, and follow-up imaging confirmed nodal metastases in 2 lesions. 68Ga-PSMA11 and 68Ga-RM2 PET identified 27 and 26 intraprostatic lesions, respectively, and 5 pelvic lymph nodes each in 17 patients. Concordance between 68Ga-RM2 and 68Ga-PSMA11 PET was found in 18 prostatic lesions in 11 patients, and 4 lymph nodes in 2 patients. Non-congruent findings were observed in 6 patients (intraprostatic lesions in 4 patients and nodal lesions in 2 patients). Both 68Ga-RM2 and 68Ga-PSMA11 had higher sensitivity and accuracy rates with 98%, 89%, and 95%, 89%, respectively, compared to mpMRI at 77% and 77%. Specificity was highest for mpMRI with 75% followed by 68Ga-PSMA11 (67%), and 68Ga-RM2 (65%). Conclusion: 68Ga-RM2 PET accurately detects intermediate- and high-risk primary PC with a detection rate of 93%. In addition, it showed significantly higher specificity and accuracy compared to mpMRI and similar performance to 68Ga-PSMA11 PET. These findings need to be confirmed in larger studies to identify which patients will benefit from one or the other or both radiopharmaceuticals.
View details for DOI 10.2967/jnumed.122.263971
View details for PubMedID 35552245
-
68Ga-PSMA-11 PET/MRI in patients with newly diagnosed intermediate or high-risk prostate adenocarcinoma: PET findings correlate with outcomes after definitive treatment.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
2022
Abstract
Prostate-specific membrane antigen (PSMA) PET offers superior accuracy to other imaging modalities in initial staging of prostate cancer and is more likely to affect management. We examined the prognostic value of 68Ga-PSMA-11 uptake in primary lesion and presence of metastatic disease on PET in newly diagnosed prostate cancer patients prior to initial therapy. Methods: In a prospective study from April 2016 to December 2020, 68Ga-PSMA-11 PET/MRI was done in men with new diagnosis of intermediate or high-grade prostate cancer who were candidates for prostatectomy. Patients were followed up after initial therapy for up to 5 years. We examined the Kendall correlation between PET (intense uptake in primary lesion and presence of metastatic disease) and clinical and pathologic findings (grade group, extraprostatic extension, nodal involvement) relevant for risk stratification, and examined the relationship between PET findings and outcome using Kaplan-Meier analysis. Results: Seventy-three men, 64.0±6.3 years of age were imaged. Seventy-two had focal uptake in prostate and in 20 (27%), PSMA-avid metastatic disease was identified. Uptake correlated with grade group and prostate-specific antigen (PSA). Presence of PSMA metastasis correlated with grade group and pathologic nodal stage. PSMA PET had higher per-patients positivity than nodal dissection in patients with only 5-15 nodes removed (8/41 vs. 3/41) but lower positivity if more than 15 nodes were removed (13/21 vs. 10/21). High uptake in primary (SUVmax>12.5, P = .008) and presence of PSMA metastasis (P = .013) were associated with biochemical failure, and corresponding hazard ratios for recurrence within 2-years (4.93 and 3.95, respectively) were similar or higher than other clinicopathologic prognostic factors. Conclusions: 68Ga-PSMA-11 PET can risk stratify patients with intermediate or high-grade prostate cancer prior to prostatectomy based on degree of uptake in prostate and presence of metastatic disease.
View details for DOI 10.2967/jnumed.122.263897
View details for PubMedID 35512996
-
Positron emission tomography/computed tomography differentiates resectable thymoma from anterior mediastinal lymphoma.
The Journal of thoracic and cardiovascular surgery
2022
Abstract
OBJECTIVE: Discrete anterior mediastinal masses most often represent thymoma or lymphoma. Lymphoma treatment is nonsurgical and requires biopsy. Noninvasive thymoma is ideally resected without biopsy, which may potentiate pleural metastases. This study sought to determine if clinical criteria or positron emission tomography/computed tomography could accurately differentiate the 2, guiding a direct surgery versus biopsy decision.METHODS: A total of 48 subjects with resectable thymoma and 29 subjects with anterior mediastinal lymphoma treated from 2006 to 2019 were retrospectively examined. All had pretreatment positron emission tomography/computed tomography and appeared resectable (solitary, without clear invasion or metastasis). Reliability of clinical criteria (age and B symptoms) and positron emission tomography/computed tomography maximum standardized uptake value were assessed in differentiating thymoma and lymphoma using Wilcoxon rank-sum test, chi-square test, and logistic regression. Receiver operating characteristic analysis identified the maximum standardized uptake value threshold most associated with thymoma.RESULTS: There was no association between tumor type and age group (P=.183) between those with thymoma versus anterior mediastinal lymphoma. Patients with thymoma were less likely to report B symptoms (P<.001). The median maximum standardized uptake value of thymoma and lymphoma differed dramatically: 4.35 versus 18.00 (P<.001). Maximum standardized uptake value was independently associated with tumor type on multivariable regression. On receiver operating characteristic analysis, lower maximum standardized uptake value was associated with thymoma. Maximum standardized uptake value less than 12.85 was associated with thymoma with 100.00% sensitivity and 88.89% positive predictive value. Maximum standardized uptake value less than 7.50 demonstrated 100.00% positive predictive value for thymoma.CONCLUSIONS: Positron emission tomography/computed tomography maximum standardized uptake value of resectable anterior mediastinal masses may help guide a direct surgery versus biopsy decision. Tumors with maximum standardized uptake value less than 7.50 are likely thymoma and thus perhaps appropriately resected without biopsy. Tumors with maximum standardized uptake value greater than 7.50 should be biopsied to rule out lymphoma. Lymphoma is likely with maximum standardized uptake value greater than 12.85.
View details for DOI 10.1016/j.jtcvs.2022.02.055
View details for PubMedID 35568521
-
Peptide Receptor Radionuclide Therapy (PRRT) in Advanced Pheochromocytoma and Paraganglioma From a Single Institution Experience
LIPPINCOTT WILLIAMS & WILKINS. 2022: E42-E43
View details for Web of Science ID 000819123700057
-
PROSPECTIVE STUDY OF (68)GA-RM2 PET/MRI IN PATIENTS WITH BIOCHEMICALLY RECURRENT PROSTATE CANCER AND NEGATIVE CONVENTIONAL IMAGING
LIPPINCOTT WILLIAMS & WILKINS. 2021: E1178
View details for Web of Science ID 000693689000848
-
Clinical Applications of PET/MR Imaging.
Radiologic clinics of North America
2021; 59 (5): 853-874
Abstract
PET/MR imaging is in routine clinical use and is at least as effective as PET/CT for oncologic and neurologic studies with advantages with certain PET radiopharmaceuticals and applications. In addition, whole body PET/MR imaging substantially reduces radiation dosages compared with PET/CT which is particularly relevant to pediatric and young adult population. For cancer imaging, assessment of hepatic, pelvic, and soft-tissue malignancies may benefit from PET/MR imaging. For neurologic imaging, volumetric brain MR imaging can detect regional volume loss relevant to cognitive impairment and epilepsy. In addition, the single-bed position acquisition enables dynamic brain PET imaging without extending the total study length which has the potential to enhance the diagnostic information from PET.
View details for DOI 10.1016/j.rcl.2021.05.013
View details for PubMedID 34392923
-
PROSPECTIVE EVALUATION OF F-18-DCFPYL PET/CT IN BIOCHEMICALLY RECURRENT PROSTATE CANCER: ANALYSIS OF F-18-DCFPYL UPTAKE IN POSSIBLE EXTRA-PELVIC OLIGOMETASTASES
LIPPINCOTT WILLIAMS & WILKINS. 2021: E1177-E1178
View details for Web of Science ID 000693689000847
-
Prostate cancer: Molecular imaging and MRI.
European journal of radiology
2021; 143: 109893
Abstract
The role of molecular imaging in initial evaluation of men with presumed or established diagnosis of prostate cancer and work up of biochemical recurrence and metastatic disease is rapidly evolving due to superior diagnostic performance compared to anatomic imaging. However, variable tumor biology and expression of transmembrane proteins or metabolic alterations poses a challenge. We review the evidence and controversies with emphasis on emerging PET radiopharmaceuticals and experience on clinical utility of PET/CT and PET/MRI in diagnosis and management of prostate cancer.
View details for DOI 10.1016/j.ejrad.2021.109893
View details for PubMedID 34391061
-
A Pilot Study of68Ga-PSMA11 PET/MRI and68GaRM2 PET/MRI for Biopsy Guidance in Patients with Suspected Prostate Cancer
SOC NUCLEAR MEDICINE INC. 2021
View details for Web of Science ID 000713713600481
-
Perfusion Only Scans with and without SPECT/CT in the Era of COVID-19
SOC NUCLEAR MEDICINE INC. 2021
View details for Web of Science ID 000713713600506
-
PSMA- and GRPR-targeted PET: Results from 50 Patients with Biochemically Recurrent Prostate Cancer.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
2021
Abstract
Rationale: Novel radiopharmaceuticals for positron emission tomography (PET) are evaluated for the diagnosis of biochemically recurrent prostate cancer (BCR PC). Here, we compare the gastrin releasing peptide receptors (GRPR) - targeting 68Ga-RM2 with the prostate specific membrane antigen (PSMA) - targeting 68Ga-PSMA11 and 18F-DCFPyL. Methods: Fifty patients had both 68Ga-RM2 PET/MRI and 68Ga-PSMA11 PET/CT (n = 23) or 18F-DCFPyL PET/CT (n = 27) at an interval ranging from 1 to 60 days (mean±SD: 15.8±17.7). Maximum standardized uptake values (SUVmax) were collected for all lesions. Results: RM2 PET was positive in 35 and negative in 15 of the 50 patients. PSMA PET was positive in 37 and negative in 13 of the 50 patients. Both scans detected 70 lesions in 32 patients. Forty-three lesions in 18 patients were identified only on one scan: 68Ga-RM2 detected 7 more lesions in 4 patients, while PSMA detected 36 more lesions in 13 patients. Conclusion: 68Ga-RM2 remains a valuable radiopharmaceutical even when compared with the more widely used 68Ga-PSMA11/18F-DCFPyL in the evaluation of BCR PC. Larger studies are needed to verify that identifying patients for whom these two classes of radiopharmaceuticals are complementary may ultimately allow for personalized medicine.
View details for DOI 10.2967/jnumed.120.259630
View details for PubMedID 33674398
-
Diagnostic Performance of 18F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase 3, Multicenter Study.
Clinical cancer research : an official journal of the American Association for Cancer Research
2021
Abstract
PURPOSE: Current FDA-approved imaging modalities are inadequate for localizing prostate cancer biochemical recurrence (BCR). 18F-DCFPyL is a highly selective, small-molecule PSMA-targeted PET radiotracer. CONDOR was a prospective study designed to determine the performance of 18F-DCFPyL-PET/CT in patients with BCR and uninformative standard imaging.METHODS: Men with rising PSA {greater than or equal to}0.2 ng/mL after prostatectomy or {greater than or equal to}2 ng/mL above nadir after radiation therapy were eligible. The primary endpoint was correct localization rate (CLR) defined as positive predictive value with an additional requirement of anatomic lesion co-localization between 18F-DCFPyL-PET/CT and a composite standard of truth (SOT). The SOT consisted of, in descending priority: 1) histopathology, 2) subsequent correlative imaging findings, or 3) post-radiation PSA response. The trial was considered a success if the lower bound of the 95% confidence interval for CLR exceeded 20% for 2 of 3 18F‑DCFPyL-PET/CT readers. Secondary endpoints included change in intended management and safety.RESULTS: 208 men with a median baseline PSA of 0.8 ng/mL (range: 0.2-98.4 ng/mL) underwent 18F-DCFPyL-PET/CT. The CLR was 84.8%-87.0% (lower bound of 95% CI: 77.8%-80.4%). 63.9% of evaluable patients had a change in intended management after 18F-DCFPyL-PET/CT. The disease detection rate was 59% to 66% (at least one lesion detected per patient by 18F-DCFPyL-PET/CT by central readers).CONCLUSION: Performance of 18F-DCFPyL-PET/CT achieved the study's primary endpoint, demonstrating disease localization in the setting of negative standard imaging and providing clinically meaningful and actionable information. These data further support the utility of 18F-DCFPyL-PET/CT to localize disease in men with recurrent prostate cancer.
View details for DOI 10.1158/1078-0432.CCR-20-4573
View details for PubMedID 33622706
-
Prognostic value of bone marrow metabolism on pretreatment 18F-FDG PET/CT in patients with metastatic melanoma treated with anti-PD-1 therapy.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
2021
Abstract
Purpose: To investigate the prognostic value of 18F-FDG PET/CT parameters in melanoma patients before beginning anti-PD-1 therapy. Methods: Imaging parameters including SUVmax, metabolic tumor volume (MTV), and bone marrow to liver SUVmean ratio (BLR) were measured from baseline PET/CT in 92 patients before the start of anti-PD-1 therapy. Association with survival and imaging parameters combined with clinical factors was evaluated. Clinical and laboratory data between high (> median) and low (≤ median) BLR groups were compared. Results: Multivariate analyses demonstrated that BLR was an independent prognostic factor for PFS and OS (P = 0.017, P = 0.011, respectively). The high BLR group had higher levels of white blood cell count/neutrophil count and C-Reactive Protein than the low BLR group (P < 0.05). Conclusion: Patients with high BLR were associated with poor PFS and OS, potentially explained by evidence of systemic inflammation known to be associated with immunosuppression.
View details for DOI 10.2967/jnumed.120.254482
View details for PubMedID 33547210
-
The Clinical Utility of 18F-Fluciclovine PET/CT in Biochemically Recurrent Prostate Cancer: an Academic Center Experience Post FDA Approval.
Molecular imaging and biology
2021
Abstract
To evaluate the diagnostic performance and clinical utility of 18F-fluciclovine PET/CT in patients with biochemical recurrence (BCR) of prostate cancer (PC).18F-Fluciclovine scans of 165 consecutive men with BCR after primary definitive treatment with prostatectomy (n = 102) or radiotherapy (n = 63) were retrospectively evaluated. Seventy patients had concurrent imaging with at least one other conventional modality (CT (n = 31), MRI (n = 31), or bone scan (n = 26)). Findings from 18F-fluciclovine PET were compared with those from conventional imaging modalities. The positivity rate and impact of 18F-fluciclovine PET on patient management were recorded. In 33 patients who underwent at least one other PET imaging (18F-NaF PET/CT (n = 12), 68Ga-PSMA11 PET/CT (n = 5), 18F-DCFPyL PET/CT (n = 20), and 68Ga-RM2 PET/MRI (n = 5)), additional findings were evaluated.The overall positivity rate of 18F-fluciclovine PET was 67 %, which, as expected, increased with higher prostate-specific antigen (PSA) levels (ng/ml): 15 % (PSA < 0.5), 50 % (0.5 ≤ PSA < 1), 56 % (1 ≤ PSA < 2), 68 % (2 ≤ PSA < 5), and 94 % (PSA ≥ 5), respectively. One hundred and two patients (62 %) had changes in clinical management based on 18F-fluciclovine PET findings. Twelve of these patients (12 %) had lesion localization on 18F-fluciclovine PET, despite negative conventional imaging. Treatment plans of 14 patients with negative 18F-fluciclovine PET were changed based on additional PET imaging with a different radiopharmaceutical.18F-Fluciclovine PET/CT remains a useful diagnostic tool in the workup of patients with BCR PC, changing clinical management in 62 % of participants in our cohort.
View details for DOI 10.1007/s11307-021-01583-3
View details for PubMedID 33469884
-
Positron Emission Tomography and Molecular Imaging of Head and Neck Malignancies
CURRENT RADIOLOGY REPORTS
2020; 8 (11)
View details for DOI 10.1007/s40134-020-00366-y
View details for Web of Science ID 000702994200001
-
The Role of Positron Emission Tomography in Pancreatic Cancer and Gallbladder Cancer.
Seminars in nuclear medicine
2020; 50 (5): 434–46
Abstract
18F-FDG-PET is complementary to conventional imaging in patients with clinical suspicion for exocrine pancreatic malignancies. It has similar if not superior sensitivity and specificity for detection of cancer, and when combined with contrast enhanced anatomic imaging of the abdomen, can improve diagnostic accuracy and aid in staging, assessment for resectability, radiation therapy planning, and prognostication. Various metabolic pathways affect FDG uptake in pancreatic ductal adenocarcinoma. The degree of uptake reflects histopathology, aggressiveness, metastatic potential, and metabolic profile of malignant cell and their interaction with cancer stroma. After treatment, FDG-PET is useful for detection of residual or recurrent cancer and can be used to assess and monitor response to therapy in unresectable or metastatic disease. The degree and pattern of uptake combined with other imaging features are useful in characterization of incidental pancreatic lesions and benign processes such as inflammation. Several novel PET radiopharmaceuticals have been developed to improve detection and management of pancreatic cancer. Gallbladder carcinoma is typically FDG avid and when anatomic imaging is equivocal PET can be used to assess metastatic involvement with high specificity and inform subsequent management.
View details for DOI 10.1053/j.semnuclmed.2020.04.002
View details for PubMedID 32768007
-
Imaging Characteristics and Diagnostic Performance of 2-deoxy-2-[18F]fluoro-D-Glucose PET/CT for Melanoma Patients Who Demonstrate Hyperprogressive Disease When Treated with Immunotherapy.
Molecular imaging and biology
2020
Abstract
PURPOSE: We investigated the ability of baseline 2-deoxy-2-[18F]fluoro-D-glucose PET/CT parameters, acquired before the start of immunotherapy, to predict development of hyperprogressive disease (HPD) in melanoma patients. We also evaluated the diagnostic performances of ratios of baseline and first restaging PET/CT parameters to diagnose HPD without information of the tumor growth kinetic ratio (TGKR) that requires pre-baseline imaging before baseline imaging (3 timepoint imaging).PROCEDURES: Seventy-six patients who underwent PET/CT before and approximately 3months following initiation of immunotherapy were included. PET/CT parameters, including metabolic tumor volume (MTV) for all melanoma lesions and total measured tumor burden (TMTB) based on irRECIST, were measured from baseline PET/CT (MTVbase and TMTBbase) and first restaging PET/CT (MTVpost and TMTBpost). The ratios of MTV (MTVpost/MTVbase, MTVr) and TMTB (TMTBpost/TMTBbase, TMTBr) were calculated.RESULTS: MTVbase of HPD patients (n=9, TGKR ≥2) was larger than that of non-HPD (n=67, TGKR <2) patients (P<0.05), and HPD patients demonstrated shorter median overall survival (7 vs. more than 60months, P<0.05). The area under the curve (AUC) of MTVbase (≥155.5ml) to predict the risk of HPD was 0.703, with a sensitivity of 66.7% and specificity of 81.2%. The AUCs of MTVr (≥1.25) and TMTBr (≥1.27) to diagnose HPD without information of TGKR were 0.875 and 0.977 with both sensitivities of 100%, and specificities of 79% and 83.9%, respectively.CONCLUSIONS: Patients at high risk of developing HPD could not be accurately identified based on baseline PET/CT parameters. The ratios of baseline and first restaging PET/CT parameters may be helpful to diagnose HPD, when patients do not undergo pre-baseline imaging.
View details for DOI 10.1007/s11307-020-01526-4
View details for PubMedID 32789649
-
Will FAPI PET/CT Replace FDG PET/CT in the Next Decade?-Counterpoint: No, not so fast!
AJR. American journal of roentgenology
2020
Abstract
This article does not include an abstract. Please see the accompanying Point by Jeremie Calais and Christine E. Mona.
View details for DOI 10.2214/AJR.20.23794
View details for PubMedID 32755204
-
A prospective study of Ga-68-RM2 PET/MRI in patients with biochemically recurrent prostate cancer and negative conventional imaging.
LIPPINCOTT WILLIAMS & WILKINS. 2020
View details for Web of Science ID 000560368306300
-
Prospective evaluation of F-18-DCFPyL PET/CT in biochemically recurrent prostate cancer: Analysis of lesion localization and distribution.
AMER SOC CLINICAL ONCOLOGY. 2020
View details for Web of Science ID 000560368302399
-
Extrahepatic Ga-68-DOTATATE-Avid Tumor Volume and serum Chromogranin A Predict Short-Term Outcome of Lu-177-DOTATATE in Late-Stage Metastatic Gastroenteropancreatic Neuroendocrine Tumors
SOC NUCLEAR MEDICINE INC. 2020
View details for Web of Science ID 000568290500275
-
Ga-68-PSMA-11 PET/MR Imaging before prostatectomy: correlation with surgical pathology and two-year follow up
SOC NUCLEAR MEDICINE INC. 2020
View details for Web of Science ID 000568290500168
-
PSMA-and GRPR-targeted PET: Preliminary Results in Patients with Biochemically Recurrent Prostate Cancer
SOC NUCLEAR MEDICINE INC. 2020
View details for Web of Science ID 000568290501184
-
Prognostic value of volumetric PET parameters at early response evaluation in melanoma patients treated with immunotherapy
SOC NUCLEAR MEDICINE INC. 2020
View details for Web of Science ID 000568290500428
-
Imaging characteristics and diagnostic performance of F-18-FDG PET/CT for melanoma patients who demonstrate hyperprogressive disease when treated with immunotherapy
SOC NUCLEAR MEDICINE INC. 2020
View details for Web of Science ID 000568290500424
-
Toxicity identification and evaluation of peptide receptor radionuclide therapy (PRRT) for neuroendocrine tumors (NETs)
SOC NUCLEAR MEDICINE INC. 2020
View details for Web of Science ID 000568290501378
-
INTERIM ANALYSIS RESULTS OF A PROSPECTIVE STUDY OF (68)GA-RM2 PET/MRI IN PATIENTS WITH BIOCHEMICALLY RECURRENT PROSTATE CANCER AND NEGATIVE CONVENTIONAL IMAGING
LIPPINCOTT WILLIAMS & WILKINS. 2020: E1118
View details for Web of Science ID 000527010300463
-
Prevalence of Bone Metastases in Neuroendocrine Neoplasms by 68Ga DOTATATE PET Scan
LIPPINCOTT WILLIAMS & WILKINS. 2020: 486
View details for Web of Science ID 000526823600114
-
Fungal endocarditis resembling primary cardiac malignancy in a patient with B-cell ALL with culture confirmation.
Radiology case reports
2020; 15 (2): 117–19
Abstract
Fungal endocarditis is a rare subtype of infective endocarditis that often presents with nonspecific symptoms in patients with complex medical histories, making diagnosis challenging. Patients with a history of ALL may present with congestive heart failure, chemo-induced cardiomyopathy, acute coronary syndrome, cardiac lymphomatous metastasis, or infections. We present the case of a patient with a history of ALL who presented with acute coronary syndrome and imaging concerning for primary cardiac lymphoma, when in fact the patient ended up suffering from culture proven fungal endocarditis.
View details for DOI 10.1016/j.radcr.2019.10.022
View details for PubMedID 31768196
-
Single institution experience with peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors (NET)
AMER SOC CLINICAL ONCOLOGY. 2020
View details for Web of Science ID 000530922700601
-
Quantification of brain oxygen extraction and metabolism with [15O]-gas PET: A technical review in the era of PET/MRI.
NeuroImage
2020: 117136
Abstract
Oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2) are key cerebral physiological parameters to identify at-risk cerebrovascular patients and understand brain health and function. PET imaging with [15O]-oxygen tracers, either through continuous or bolus inhalation, provides non-invasive assessment of OEF and CMRO2. Numerous tracer delivery, PET acquisition, and kinetic modeling approaches have been adopted to map brain oxygenation. The purpose of this technical review is to critically evaluate different methods for [15O]-gas PET and its impact on the accuracy and reproducibility of OEF and CMRO2 measurements. We perform a meta-analysis of brain oxygenation PET studies in healthy volunteers and compare between continuous and bolus inhalation techniques. We also describe OEF metrics that have been used to detect hemodynamic impairment in cerebrovascular disease. For these patients, advanced techniques to accelerate the PET scans and potential synthesis with MRI to avoid arterial blood sampling would facilitate broader use of [15O]-oxygen PET for brain physiological assessment.
View details for DOI 10.1016/j.neuroimage.2020.117136
View details for PubMedID 32634594
-
Patient Selection and Toxicities of PRRT for Metastatic Neuroendocrine Tumors and Research Opportunities.
Current treatment options in oncology
2020; 21 (4): 25
Abstract
Neuroendocrine tumors (NETs) are a heterogenous group of neoplasms characterized by varied biological hallmarks and behavior, ranging from indolent to aggressive. For many decades, somatostatin analogues and few targeted therapies were available for NETs and these therapies had minimal response rates. However, there have been a number of recent treatment advances. Peptide receptor radionuclide therapy (PRRT) is a novel approach to treatment of NETs and has changed the landscape of treatment for NETs. It is a form of targeted therapy in which a radiolabeled somatostatin analogue delivers radiation specifically to tumor cells expressing the somatostatin receptor.
View details for DOI 10.1007/s11864-020-0711-9
View details for PubMedID 32172368
-
An unusual presentation of recurrent T cell lymphoma: angiocentric pattern of cutaneous uptake on [18F]FDG PET/CT.
European journal of nuclear medicine and molecular imaging
2020
View details for DOI 10.1007/s00259-020-05026-z
View details for PubMedID 32918110
-
Prognostic value of volumetric PET parameters at early response evaluation in melanoma patients treated with immunotherapy.
European journal of nuclear medicine and molecular imaging
2020
Abstract
The purpose of this study was to investigate the prognostic value of whole-body metabolic tumor volume (MTV) and other metabolic tumor parameters, obtained from baseline and first restaging 18F-FDG PET/CT scans in melanoma patients treated with immune checkpoint inhibitors (ICIs).Eighty-five consecutive melanoma patients (M, 57; F, 28) treated with ICIs who underwent PET/CT scans before and approximately 3 months after the start of immunotherapy were retrospectively enrolled. Metabolic tumor parameters including MTV for all melanoma lesions were measured on each scan. A Cox proportional hazards model was used for univariate and multivariate analyses of metabolic parameters combined with known clinical prognostic factors associated with overall survival (OS). Kaplan-Meier curves for patients dichotomized based on median values of imaging parameters were generated.The median OS time in all patients was 45 months (95% CI 24-45 months). Univariate analysis demonstrated that MTV obtained from first restaging PET/CT scans (MTVpost) was the strongest prognostic factor for OS among PET/CT parameters (P < 0.0001). The median OS in patients with high MTVpost (≥ 23.44) was 16 months (95% CI 12-32 months) as compared with more than 60 months in patients with low MTVpost (< 23.44) (P = 0.0003). A multivariate model including PET/CT parameters and known clinical prognostic factors revealed that MTVpost and the presence of central nervous system lesions were independent prognostic factors for OS (P = 0.0004, 0.0167, respectively). One pseudoprogression case (1.2%) was seen in this population and classified into the high MTVpost group.Whole-body metabolic tumor volume from PET scan acquired approximately 3 months following initiation of immunotherapy (MTVpost) is a strong prognostic indicator of OS in melanoma patients. Although the possibility of pseudoprogression must be considered whenever evaluating first restaging PET imaging, it only occurred in 1 patient in our cohort.
View details for DOI 10.1007/s00259-020-04792-0
View details for PubMedID 32296882
-
Prospective Evaluation in an Academic Center of 18F-DCFPyL PET/CT in Biochemically Recurrent Prostate Cancer: A Focus on Localizing Disease and Changes in Management.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
2019
Abstract
18F-DCFPyL is a promising PET radiopharmaceutical targeting prostate specific membrane antigen (PSMA). We present our experience in this single academic center prospective study evaluating the positivity rate of 18F-DCFPyL PET/CT in patients with biochemical recurrence (BCR) of prostate cancer (PC). Methods: We prospectively enrolled 72 men (52-91 years old, mean±SD: 71.5±7.2) with BCR after primary definitive treatment with prostatectomy (n = 42) or radiotherapy (n = 30). The presence of lesions compatible with PC was evaluated by two independent readers. Fifty-nine patients had concurrent scans with at least one other conventional scan: bone scan (24), CT (21), MR (20), 18F-Fluciclovine PET/CT (18) and/or 18F-NaF PET (14). Findings from 18F-DCFPyL PET/CT were compared with those from other modalities. Impact on patient management based on 18F-DCFPyL PET/CT was recorded from clinical chart review. Results: 18F-DCFPyL PET/CT had an overall positivity rate of 85%, which increased with higher prostate specific antigen (PSA) levels (ng/mL): 50% (PSA<0.5), 69% (0.5≤PSA<1), 100% (1≤PSA<2), 91% (2≤PSA<5) and 96% (PSA≥5), respectively. 18F-DCFPyL PET detected more lesions than conventional imaging. For anatomic imaging, 20/41 (49%) CT/MRI had congruent findings with 18F-DCFPyL, while 18F-DCFPyL PET was positive in 17/41 (41%) cases with negative CT/MRI. For bone imaging, 26/38 (68%) bone scan/18F-NaF PET were congruent with 18F-DCFPyL PET, while 18F-DCFPyL PET localized bone lesions in 8/38 (21%) patients with negative bone scan/18F-NaF PET. In 8/18 (44%) patients, 18F-Fluciclovine PET had located the same lesions as the 18F-DCFPyL PET, while 5/18 (28%) patients with negative 18F-Fluciclovine had positive 18F-DCFPyL PET findings and 1/18 (6%) patient with negative 18F-DCFPyL had uptake in the prostate bed on 18F-Fluciclovine PET. In the remaining 4/18 (22%) patients, 18F-DCFPyL and 18F-Fluciclovine scans showed different lesions. Lastly, 43/72 (60%) patients had treatment changes after 18F-DCFPyL PET and, most noticeably, 17 of these patients (24% total) had lesion localization only on 18F-DCFPyL PET, despite negative conventional imaging. Conclusion: 18F-DCFPyL PET/CT is a promising diagnostic tool in the work-up of biochemically recurrent prostate cancer given the high positivity rate as compared to FDA-approved currently available imaging modalities and its impact on clinical management in 60% of patients.
View details for DOI 10.2967/jnumed.119.231654
View details for PubMedID 31628216
-
Prospective Evaluation of F-18-DCFPyL PET/CT and Conventional Imaging in Patients with Biochemically Recurrent Prostate Cancer
SOC NUCLEAR MEDICINE INC. 2019
View details for Web of Science ID 000473116801016
-
Prospective evaluation of F-18- DCFPyL in Patients with Biochemically Recurrent Prostate Cancer: Positivity Rate and Correlation with PSA levels
SOC NUCLEAR MEDICINE INC. 2019
View details for Web of Science ID 000473116801610
-
Prospective Comparison of F-18-DCFPyL PET/CT with F-18-NaF PET/CT for Detection of Skeletal Metastases in Biochemically Recurrent Prostate Cancer
SOC NUCLEAR MEDICINE INC. 2019
View details for Web of Science ID 000473116801621
-
Quantification of uptake in Ga-68-DOTATATE PET: Correlation between standardized uptake values and patient factors
SOC NUCLEAR MEDICINE INC. 2019
View details for Web of Science ID 000473116800434
-
Perfusion Scintigraphy in Diagnosis and Management of Thromboembolic Pulmonary Hypertension.
Radiographics : a review publication of the Radiological Society of North America, Inc
2019; 39 (1): 169-185
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a life-threatening complication of acute pulmonary embolism (PE). Because the treatment of CTEPH is markedly different from that of other types of pulmonary hypertension, lung ventilation-perfusion (V/Q) scintigraphy is recommended for the workup of patients with unexplained pulmonary hypertension. Lung V/Q scintigraphy is superior to CT pulmonary angiography for detecting CTEPH. Perfusion defect findings of CTEPH can be different from those of acute PE. Familiarity with the patterns of perfusion defects seen during the initial workup of CTEPH and the expected posttreatment changes seen at follow-up imaging is essential for accurate interpretation of V/Q scintigraphy findings. ©RSNA, 2019.
View details for DOI 10.1148/rg.2019180074
View details for PubMedID 30620694
-
Glucose-corrected standardized uptake value (SUVgluc) is the most accurate SUV parameter for evaluation of pulmonary nodules
AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
2019; 9 (5): 243–47
Abstract
Standardized uptake values (SUVs) of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) are widely used to help characterize pulmonary nodules. The purpose of this study is to assess the accuracy of the SUV corrected by blood glucose levels (SUVgluc), compared to four other commonly used semi-quantitative methods: maximal SUV normalized to body weight (SUVmax), ratio of SUV of nodule to cerebellum (SUVcer), SUV normalized to body surface area (SUVbsa) and SUV normalized to body mass index (SUVbmi). 52 patients with lung nodules had FDG PET scans, consecutively imaged between 7/1/2015 and 6/7/2016. Histopathologic result of the nodules, obtained within two months after the FDG PET scan, demonstrated 10 benign and 42 malignant lung nodules. The SUVgluc was defined as SUVmax × blood glucose level/100. The average SUVmax was 2.8 for benign nodules and 7.7 for malignant nodules. No significant difference in the receiver operating characteristic (ROC) area under the curves (AUCs) were found between the SUVmax (0.84) and the SUVcer (0.87) or SUVbsa (0.86), or SUVbmi (0.86) with p-values greater than 0.05; however, the ROC AUC for the SUVgluc (0.90) was larger than that for the SUVmax with p-value of 0.03. These results suggest that SUVgluc may assist in more accurately representing the glucose metabolism of malignant lung nodules by accounting for the patient's blood glucose level (BGL). The simplicity of the SUVgluc method avoids an additional reference ROI, uses preexisting clinical data, i.e. pre-injection blood glucose level, and retains the familiar SUV reference values.
View details for Web of Science ID 000496541100004
View details for PubMedID 31772822
View details for PubMedCentralID PMC6872475
-
Comparison of three interpretation criteria of 68Ga-PSMA11 PET based on inter- and intra-reader agreement.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
2019
Abstract
Positron emission tomography (PET) using radiolabeled prostate specific membrane antigen (PSMA) is now more and more widely adopted as a valuable tool to evaluate patients with prostate cancer (PC). Recently, three different criteria for interpretation of PSMA PET were published: European Association of Nuclear Medicine (EANM) criteria, prostate cancer molecular imaging standardized evaluation (PROMISE) criteria, and PSMA-reporting and data system (PSMA-RADS). We compared these three criteria in terms of inter-reader, intra-reader, and inter-criteria agreement. Methods: Data from 104 patients prospectively enrolled in research protocols at our institution were retrospectively reviewed. The cohort consisted of two groups: 47 patients (mean age: 64.2 years old) who underwent Glu-NH-CO-NH-Lys-(Ahx)-[68Ga(HBED-CC)] (68Ga-PSMA11) PET/magnetic resonance imaging (MRI) for initial staging of biopsy-proven intermediate- or high-risk PC, and 57 patients (mean age: 70.5 years old) who underwent 68Ga-PSMA11 PET/computed tomography (CT) due to biochemically recurrent (BCR) PC. Three nuclear medicine physicians independently evaluated all 68Ga-PSMA11 PET/MRI and PET/CT studies according to the three interpretation criteria. Two of them reevaluated all studies 6 months later in the same manner and blinded to the initial reading. Gwet's AC was calculated to evaluate inter- and intra-reader, and inter-criteria agreement based on the following sites: local lesion (primary tumor or prostate bed after radical prostatectomy), lymph node metastases, and other metastases. Results: In the PET/MRI group, inter-reader, intra-reader, and inter-criteria agreements were substantial to almost perfect in any sites according to all of the three criteria. In the PET/CT group, inter-reader agreement was substantial to almost perfect except judgement of distant metastases based on PSMA-RADS (Gwet's AC = 0.57, moderate agreement), in which the most frequent cause of disagreement was lung nodules. Intra-reader agreements were substantial to almost perfect in any sites according to all of the three criteria. Inter-criteria agreements of each site were also substantial to almost perfect. Conclusion: Although the three published criteria have good inter-reader and intra-reader reproducibility in evaluating 68Ga-PSMA11 PET, there are factors bringing inter-reader disagreement. This indicates that further work is needed to address the issue.
View details for DOI 10.2967/jnumed.119.232504
View details for PubMedID 31562226
-
Spectrum of Ga-68-DOTA TATE Uptake in Patients With Neuroendocrine Tumors
CLINICAL NUCLEAR MEDICINE
2016; 41 (6): E281-E287
Abstract
To analyze the biodistribution of Ga-DOTA-TATE in the normal tissues and uptake in benign, indeterminate, and malignant lesions in a population of patients with known neuroendocrine tumors (NET) using semiquantitative standardized uptake values (SUV) measurements.One hundred four consecutively scanned patients (51 men and 53 women; mean age, 56.4 years) with confirmed diagnosis of NET underwent PET/CT 1 hour after administration of Ga-DOTA-TATE. SUVmean, and SUVmax were measured in 37 normal anatomical structures for each patient. Abnormal uptake was divided into benign, indeterminate, and malignant categories based on imaging characteristic, clinical follow-up, and pathology.High physiologic uptake (SUVmax > 7) was observed in spleen, renal parenchyma, adrenal glands, pituitary gland, stomach, and liver (in decreasing order). Moderate uptake (3.5-7) was present in the prostate, jejunum, pancreas, ileum, and salivary glands. Mild uptake (2-3.5) was present in the uterus, colon, thyroid, rectum, and skeleton. A total of 678 lesions (limited to 5 lesions with highest uptake per organ) were included in the analysis, including 127 benign and 54 indeterminate lesions. Uptake was significantly higher in malignant lesions than in benign lesions, but an overlap was noted between the groups.Ga-DOTA TATE uptake in normal and abnormal structures is highly variable in patients with NET. SUV is a useful measure for characterizing benign versus malignant lesions. Anatomical and clinical correlation may be necessary to characterize foci of intermediate uptake.
View details for DOI 10.1097/RLU.0000000000001100
View details for Web of Science ID 000376886800003
View details for PubMedID 26673240
-
Physiological distribution of Ga-68-DOTA-TATE: an atlas of standardized uptake values
SOC NUCLEAR MEDICINE INC. 2015
View details for Web of Science ID 000358738802255