Professional Education


  • Doctor of Philosophy, Universidad Autonoma De Madrid (2017)
  • Master of Science, Universidad Autonoma De Madrid (2011)
  • Bachelor of Science, Unlisted School (2010)

All Publications


  • A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart CELL Nicolas-Avila, J. A., Lechuga-Vieco, A. V., Esteban-Martinez, L., Sanchez-Diaz, M., Diaz-Garcia, E., Santiago, D. J., Rubio-Ponce, A., Li, J., Balachander, A., Quintana, J. A., Martinez-de-Mena, R., Castejon-Vega, B., Pun-Garcia, A., Traves, P. G., Bonzon-Kulichenko, E., Garcia-Marques, F., Cusso, L., A-Gonzalez, N., Gonzalez-Guerra, A., Roche-Molina, M., Martin-Salamanca, S., Crainiciuc, G., Guzman, G., Larrazabal, J., Herrero-Galan, E., Alegre-Cebollada, J., Lemke, G., Rothlin, C., Jesus Jimenez-Borreguero, L., Reyes, G., Castrillo, A., Desco, M., Munoz-Canoves, P., Ibanez, B., Torres, M., Ng, L., Priori, S. G., Bueno, H., Vazquez, J., Cordero, M. D., Bernal, J. A., Enriquez, J. A., Hidalgo, A. 2020; 183 (1): 94-+

    Abstract

    Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.

    View details for DOI 10.1016/j.cell.2020.08.031

    View details for Web of Science ID 000576772900010

    View details for PubMedID 32937105

  • Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Q(pool) SCIENCE ADVANCES Calvo, E., Cogliati, S., Hernansanz-Agustin, P., Loureiro-Lopez, M., Guaras, A., Casuso, R. A., Garcia-Marques, F., Acin-Perez, R., Marti-Mateos, Y., Silla-Castro, J. C., Carro-Alvarellos, M., Huertas, J. R., Vazquez, J., Enriquez, J. A. 2020; 6 (26): eaba7509

    Abstract

    Mitochondrial respiratory complexes assemble into supercomplexes (SC). Q-respirasome (III2 + IV) requires the supercomplex assembly factor (SCAF1) protein. The role of this factor in the N-respirasome (I + III2 + IV) and the physiological role of SCs are controversial. Here, we study C57BL/6J mice harboring nonfunctional SCAF1, the full knockout for SCAF1, or the wild-type version of the protein and found that exercise performance is SCAF1 dependent. By combining quantitative data-independent proteomics, 2D Blue native gel electrophoresis, and functional analysis of enriched respirasome fractions, we show that SCAF1 confers structural attachment between III2 and IV within the N-respirasome, increases NADH-dependent respiration, and reduces reactive oxygen species (ROS). Furthermore, the expression of AOX in cells and mice confirms that CI-CIII superassembly segments the CoQ in two pools and modulates CI-NADH oxidative capacity.

    View details for DOI 10.1126/sciadv.aba7509

    View details for Web of Science ID 000543504100029

    View details for PubMedID 32637615

    View details for PubMedCentralID PMC7314541

  • Complement C5 Protein as a Marker of Subclinical Atherosclerosis JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY Martinez-Lopez, D., Roldan-Montero, R., Garcia-Marques, F., Nunez, E., Jorge, I., Camafeita, E., Minguez, P., Rodriguez de Cordoba, S., Lopez-Melgar, B., Lara-Pezzi, E., Fernandez-Ortiz, A., Ibanez, B., Manuel Valdivielso, J., Fuster, V., Michel, J., Miguel Blanco-Colio, L., Vazquez, J., Luis Martin-Ventura, J. 2020; 75 (16): 1926–41

    Abstract

    The mechanisms underlying early atherosclerotic plaque formation are not completely understood. Moreover, plasma biomarkers of subclinical atherosclerosis are lacking.The purpose of this study was to analyze the temporal and topologically resolved protein changes taking place in human aortas with early atherosclerosis to find new potential diagnostic and/or therapeutic targets.The protein composition of healthy aortas (media layer) or with early atheroma (fatty streak and fibrolipidic, media and intima layers) was analyzed by deep quantitative multiplexed proteomics. Further analysis was performed by Western blot, immunohistochemistry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Plasma levels of complement C5 were analyzed in relation to the presence of generalized (>2 plaques) or incipient (0 to 2 plaques) subclinical atherosclerosis in 2 independent clinical cohorts (PESA [Progression of Early Subclinical Atherosclerosis] [n = 360] and NEFRONA [National Observatory of Atherosclerosis in Nephrology] [n = 394]).Proteins involved in lipid transport, complement system, immunoglobulin superfamily, and hemostasis are increased in early plaques. Components from the complement activation pathway were predominantly increased in the intima of fibrolipidic plaques. Among them, increased C5 protein levels were further confirmed by Western blot, enzyme-linked immunosorbent assay and immunohistochemistry, and associated with in situ complement activation. Plasma C5 was significantly increased in individuals with generalized subclinical atherosclerosis in both PESA and NEFRONA cohorts, independently of risk factors. Moreover, in the PESA study, C5 plasma levels positively correlated with global plaque volume and coronary calcification.Activation of the complement system is a major alteration in early atherosclerotic plaques and is reflected by increased C5 plasma levels, which have promising value as a novel circulating biomarker of subclinical atherosclerosis.

    View details for Web of Science ID 000531872400010

    View details for PubMedID 32327104

  • Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proceedings of the National Academy of Sciences of the United States of America Hsu, E. C., Rice, M. A., Bermudez, A., Marques, F. J., Aslan, M., Liu, S., Ghoochani, A., Zhang, C. A., Chen, Y. S., Zlitni, A., Kumar, S., Nolley, R., Habte, F., Shen, M., Koul, K., Peehl, D. M., Zoubeidi, A., Gambhir, S. S., Kunder, C. A., Pitteri, S. J., Brooks, J. D., Stoyanova, T. 2020

    Abstract

    Resistance to androgen deprivation therapy, or castration-resistant prostate cancer (CRPC), is often accompanied by metastasis and is currently the ultimate cause of prostate cancer-associated deaths in men. Recently, secondary hormonal therapies have led to an increase of neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. Here, we identify that high levels of cell surface receptor Trop2 are predictive of recurrence of localized prostate cancer. Moreover, Trop2 is significantly elevated in CRPC and NEPC, drives prostate cancer growth, and induces neuroendocrine phenotype. Overexpression of Trop2 induces tumor growth and metastasis while loss of Trop2 suppresses these abilities in vivo. Trop2-driven NEPC displays a significant up-regulation of PARP1, and PARP inhibitors significantly delay tumor growth and metastatic colonization and reverse neuroendocrine features in Trop2-driven NEPC. Our findings establish Trop2 as a driver and therapeutic target for metastatic prostate cancer with neuroendocrine phenotype and suggest that high Trop2 levels could identify cancers that are sensitive to Trop2-targeting therapies and PARP1 inhibition.

    View details for DOI 10.1073/pnas.1905384117

    View details for PubMedID 31932422

  • Reconstructed Apoptotic Bodies as Targeted "Nano Decoys" to Treat Intracellular Bacterial Infections within Macrophages and Cancer Cells. ACS nano Bose, R. J., Tharmalingam, N., Garcia Marques, F. J., Sukumar, U. K., Natarajan, A., Zeng, Y., Robinson, E., Bermudez, A., Chang, E., Habte, F., Pitteri, S. J., McCarthy, J. R., Gambhir, S. S., Massoud, T. F., Mylonakis, E., Paulmurugan, R. 2020

    Abstract

    Staphylococcus aureus (S. aureus) is a highly pathogenic facultative anaerobe that in some instances resides as an intracellular bacterium within macrophages and cancer cells. This pathogen can establish secondary infection foci, resulting in recurrent systemic infections that are difficult to treat using systemic antibiotics. Here, we use reconstructed apoptotic bodies (ReApoBds) derived from cancer cells as "nano decoys" to deliver vancomycin intracellularly to kill S. aureus by targeting inherent "eat me" signaling of ApoBds. We prepared ReApoBds from different cancer cells (SKBR3, MDA-MB-231, HepG2, U87-MG, and LN229) and used them for vancomycin delivery. Physicochemical characterization showed ReApoBds size ranges from 80 to 150 nm and vancomycin encapsulation efficiency of 60 ± 2.56%. We demonstrate that the loaded vancomycin was able to kill intracellular S. aureus efficiently in an in vitro model of S. aureus infected RAW-264.7 macrophage cells, and U87-MG (p53-wt) and LN229 (p53-mt) cancer cells, compared to free-vancomycin treatment (P < 0.001). The vancomycin loaded ReApoBds treatment in S. aureus infected macrophages showed a two-log-order higher CFU reduction than the free-vancomycin treatment group. In vivo studies revealed that ReApoBds can specifically target macrophages and cancer cells. Vancomycin loaded ReApoBds have the potential to kill intracellular S. aureus infection in vivo in macrophages and cancer cells.

    View details for DOI 10.1021/acsnano.0c00921

    View details for PubMedID 32347709

  • Genomic analysis of Vascular Invasion in Hepatocellular Carcinoma (HCC) Reveals Molecular Drivers and Predictive Biomarkers. Hepatology (Baltimore, Md.) Krishnan, M. S., Rajan Kd, A., Park, J., Arjunan, V., Garcia Marques, F. J., Bermudez, A., Girvan, O. A., Hoang, N. S., Yin, J., Nguyen, M. H., Kothary, N., Pitteri, S., Felsher, D. W., Dhanasekaran, R. 2020

    Abstract

    Vascular invasion is a critical risk factor for hepatocellular carcinoma (HCC) recurrence and poor survival. The molecular drivers of vascular invasion in HCC are largely unknown. Deciphering the molecular landscape of invasive HCC will help identify novel therapeutic targets and noninvasive biomarkers. To this end, we undertook this study to evaluate the genomic, transcriptomic, and proteomic profile of tumors with vascular invasion using the multi-platform cancer genome atlas (TCGA) data (n=373). In the TCGA liver hepatocellular carcinoma (LIHC) cohort, macrovascular invasion was present in 5% (n=17) of tumors and microvascular invasion in 25% (n=94) of tumors. Functional pathway analysis revealed that the MYC oncogene was a common upstream regulator of the mRNA, miRNA and proteomic changes in vascular invasion. We performed comparative proteomic analyses of invasive human HCC and MYC driven murine HCC and identified fibronectin to be proteomic biomarker of invasive HCC (mouse Fn1 p= 1.7 X 10-11 ; human FN1 p=1.5 X 10-4 ) conserved across the two species. Mechanistically, we show that FN1 promotes the migratory and invasive phenotype of HCC cancer cells. We demonstrate tissue overexpression of fibronectin in human HCC using a large independent cohort of human HCC tissue microarray (n=153; p<0.001). Lastly, we showed that plasma fibronectin levels were significantly elevated in patients with HCC (n=35, mean=307.7 μg/ml, SEM=35.9) when compared to cirrhosis (n=10, mean=41.8 μg/ml, SEM=13.3; p<0.0001). CONCLUSION: Our study evaluates the molecular landscape of tumors with vascular invasion, identifying distinct transcriptional, epigenetic and proteomic changes driven by the MYC oncogene. We show that MYC upregulates fibronectin expression which promotes HCC invasiveness. In addition, we identify fibronectin to be a promising non-invasive proteomic biomarker of vascular invasion in HCC.

    View details for DOI 10.1002/hep.31614

    View details for PubMedID 33140851

  • APOA1 oxidation is associated to dysfunctional high-density lipoproteins in human abdominal aortic aneurysm EBIOMEDICINE Martinez-Lopez, D., Camafeita, E., Cedo, L., Roldan-Montero, R., Jorge, I., Garcia-Marques, F., Gomez-Serrano, M., Bonzon-Kulichenko, E., Blanco-Vaca, F., Miguel Blanco-Colio, L., Michel, J., Carles Escola-Gil, J., Vazquez, J., Luis Martin-Ventura, J. 2019; 43: 43–53

    Abstract

    High-density lipoproteins (HDL) are a complex mixture of lipids and proteins with vasculoprotective properties. However, HDL components could suffer post-translational modifications (PTMs) under pathological conditions, leading to dysfunctional HDL. We studied whether HDL are modified in abdominal aortic aneurysm (AAA) and the effect on HDL functionality.HDL were isolated by ultracentrifugation from AAA tissue (HDL-T) and from plasma of healthy volunteers and then incubated with AAA tissue-conditioned medium (HDL-AAA CM). PTMs from these particles were characterized using Comet-PTM. The ability of HDL-AAA CM for promoting cholesterol efflux was determined ex vivo and in vivo by using J774A.1 [3H]cholesterol-labeled mouse macrophages and after injecting [3H]cholesterol-labeled mouse macrophages and HDL into the peritoneal cavity of wild-type C57BL/6 mice, respectively. Trp50 and Trp108 oxidized forms of APOA1 in HDL incubated with conditioned-medium of activated neutrophils and in plasma of AAA patients and controls were measured by targeted parallel reaction monitoring.Oxidation was the most prevalent PTM in apolipoproteins, particularly in APOA1. Trp50 and Trp108 in APOA1 were the residues most clearly affected by oxidation in HDL-T and in HDL-AAA CM, when compared to their controls. In addition, cholesterol efflux was decreased in macrophages incubated with HDL-AAA CM in vitro and a decreased macrophage-to-serum reverse cholesterol transport was also observed in mice injected with HDL-AAA CM. Finally, both oxidized Trp50 and Trp108 forms of APOA1 were increased in HDL incubated with conditioned-medium of activated neutrophils and in plasma of AAA patients in relation to controls.Oxidative modifications of HDL present in AAA tissue and plasma were closely associated with the loss of vasculoprotective properties of HDL in AAA. FUND: MINECO, ISCiii-FEDER, CIBERDEM, CIBERCV and LA CAIXA.

    View details for DOI 10.1016/j.ebiom.2019.04.012

    View details for Web of Science ID 000470091600019

    View details for PubMedID 30982767

    View details for PubMedCentralID PMC6562066

  • SanXoT: a modular and versatile package for the quantitative analysis of high-throughput proteomics experiments BIOINFORMATICS Trevisan-Herraz, M., Bagwan, N., Garcia-Marques, F., Manuel Rodriguez, J., Jorge, I., Ezkurdia, I., Bonzon-Kulichenko, E., Vazquez, J. 2019; 35 (9): 1594–96

    Abstract

    Mass spectrometry-based proteomics has had a formidable development in recent years, increasing the amount of data handled and the complexity of the statistical resources needed. Here we present SanXoT, an open-source, standalone software package for the statistical analysis of high-throughput, quantitative proteomics experiments. SanXoT is based on our previously developed weighted spectrum, peptide and protein statistical model and has been specifically designed to be modular, scalable and user-configurable. SanXoT allows limitless workflows that adapt to most experimental setups, including quantitative protein analysis in multiple experiments, systems biology, quantification of post-translational modifications and comparison and merging of experimental data from technical or biological replicates.Download links for the SanXoT Software Package, source code and documentation are available at https://wikis.cnic.es/proteomica/index.php/SSP.jvazquez@cnic.es or ebonzon@cnic.es.Supplementary information is available at Bioinformatics online.

    View details for DOI 10.1093/bioinformatics/bty815

    View details for Web of Science ID 000469491000025

    View details for PubMedID 30252043

    View details for PubMedCentralID PMC6499250

  • NOTCH activation promotes valve formation by regulating the endocardial secretome. Molecular & cellular proteomics : MCP Torregrosa-Carrión, R., Luna-Zurita, L., García-Marqués, F., D'Amato, G., Piñeiro-Sabarís, R., Bonzón-Kulichenko, E., Vázquez, J., de la Pompa, J. L. 2019

    Abstract

    The endocardium is a specialized endothelium that lines the inner surface of the heart. Functional studies in mice and zebrafish have established that the endocardium is a source of instructive signals for the development of cardiac structures, including the heart valves and chambers. Here, we characterized the NOTCH-dependent endocardial secretome by manipulating NOTCH activity in mouse embryonic endocardial cells (MEEC) followed by mass spectrometry-based proteomics. We profiled different sets of soluble factors whose secretion not only responds to NOTCH activation, but also shows differential ligand specificity, suggesting that ligand-specific inputs may regulate the expression of secreted proteins involved in different cardiac development processes. NOTCH signaling activation correlates with a TGFβ2-rich secretome and the delivery of paracrine signals involved in focal adhesion and extracellular matrix (ECM) deposition and remodeling. In contrast, NOTCH inhibition is accompanied by the upregulation of specific semaphorins that may modulate cell migration. The secretome protein expression data showed a good correlation with gene profiling of RNA expression in embryonic endocardial cells. Additional characterization by in situ hybridization in mouse embryos revealed expression of various NOTCH candidate effector genes (Tgfβ2, Loxl2, Ptx3, Timp3, Fbln2 and Dcn) in heart valve endocardium and/or mesenchyme. Validating these results, mice with conditional Dll4 or Jag1 loss-of-function mutations showed gene expression alterations similar to those observed at the protein level in vitro. These results provide the first description of the NOTCH-dependent endocardial secretome and validate MEEC as a tool for assaying the endocardial secretome response to a variety of stimuli and the potential use of this system for drug screening.

    View details for DOI 10.1074/mcp.RA119.001492

    View details for PubMedID 31249105