Academic Appointments


All Publications


  • Angular correction methodology and characterization of a high-resolution CMOS array for patient specific quality assurance on a robotic arm linac. Journal of applied clinical medical physics Ashraf, M. R., Krimmer, J., Zalavri, L., Gu, X., Wang, L., Chuang, C. F. 2023: e14110

    Abstract

    PURPOSE: To develop an angular correction methodology and characterize a high-resolution complementary metal-oxide-semiconductor (CMOS) array for patient specific quality assurance on a robotic arm linear accelerator.METHODS: Beam path files from the treatment planning software (TPS) were used to calculate the angle of radiation beam with respect to the detector plane. Beams from multiple discrete angles were delivered to the CMOS detector array and an angular dependency look up table (LUT) was created. The LUT was then used to correct for the angular dependency of the detector. An iso-centric 5mm fixed cone, non iso-centric multi-target fixed cone, 10mm Iris and a multi-leaf collimator (MLC) based collimated plan were delivered to the phantom and compared to the TPS with and without angular correction applied. Additionally, the CMOS array was compared to gafchromic film and a diode array.RESULTS: Large errors of up to 30% were observed for oblique angles. When angular correction was applied, the gamma passing rate increased from 99.2% to 100% (average gamma value decreased from 0.29 to 0.14) for the 5-mm iso-centric cone plan. Similarly, the passing rate increased from 84.0% to 100% for the Iris plan and from 49.98% to 98.4% for the MLC plan when angular correction was applied. For the multi-target plan, applying angular correction improved the gamma passing rate from 94% to 99.6%. The 5mm iso-centric fixed cone plan was also delivered to film, and the gamma passing rate was 91.3% when using gafchromic film as the reference dataset, whereas the diode array provided insufficient sampling for this plan.CONCLUSION: A methodology of calculating the beam angle based on the beam path files was developed and validated. The array was demonstrated to be superior to other quality assurance tools because of its sub-millimeter spatial resolution and immediate read out of the results.

    View details for DOI 10.1002/acm2.14110

    View details for PubMedID 37528747

  • Stereotactic Radiosurgery for Contrast-Enhancing Satellite Nodules in Recurrent Glioblastoma: A Rare Case Series From a Single Institution. Cureus Park, D. J., Persad, A. R., Yoo, K. H., Marianayagam, N. J., Yener, U., Tayag, A., Ustrzynski, L., Emrich, S. C., Chuang, C., Pollom, E., Soltys, S. G., Meola, A., Chang, S. D. 2023; 15 (8): e44455

    Abstract

    Introduction Glioblastoma (GBM) is the most common malignant adult brain tumor and is invariably fatal. The standard treatment for GBM involves resection where possible, followed by chemoradiation per Stupp's protocol. We frequently use stereotactic radiosurgery (SRS) as a single-fraction treatment for small (volume ≤ 1cc) nodular recurrent GBM to the contrast-enhancing target on T1 MRI scan. In this paper, we aimed to evaluate the safety and efficacy of SRS for patients with contrast-enhancing satellite nodules in recurrent GBM. Methods This retrospective study analyzed the clinical and radiological outcomes of five patients who underwent CyberKnife (Accuray Inc., Sunnyvale, California) SRS at the institute between 2013 and 2022. Results From 96 patients receiving SRS for GBM, five (four males, one female; median age 53) had nine distinct new satellite lesions on MRI, separate from their primary tumor beds. Those nine lesions were treated with a median margin dose of 20 Gy in a single fraction. The three-, six, and 12-month local tumor control rates were 77.8%, 66.7%, and 26.7%, respectively. Median progression-free survival (PFS) was seven months, median overall survival following SRS was 10 months, and median overall survival (OS) was 35 months. Interestingly, the only lesion that did not show radiological progression was separate from the T2-fluid attenuated inversion recovery (FLAIR) signal of the main tumor. Conclusion Our SRS treatment outcomes for recurrent GBM satellite lesions are consistent with existing findings. However, in a unique case, a satellite nodule distinct from the primary tumor's T2-FLAIR signal and treated with an enlarged target volume showed promising control until the patient's demise. This observation suggests potential research avenues, given the limited strategies for 'multicentric' GBM lesions.

    View details for DOI 10.7759/cureus.44455

    View details for PubMedID 37664337

    View details for PubMedCentralID PMC10470661

  • Stereotactic radiosurgery for trigeminal neuralgia secondary to tumor: a single-institution retrospective series. Neurosurgical focus Hall, J. C., Ung, T. H., McCleary, T. L., Chuang, C., Gibbs, I. C., Soltys, S. G., Hayden Gephart, M., Li, G., Pollom, E. L., Chang, S. D., Meola, A. 2022; 53 (5): E3

    Abstract

    Trigeminal neuralgia (TN) secondary to tumor represents a rare and diverse entity, and treatment for secondary TN remains controversial. This report reviews a single institution's experience in treating secondary TN with stereotactic radiosurgery (SRS) and focuses on the durability of pain relief with respect to various treatment targets, i.e., the trigeminal nerve, offending tumor, or both.Between the years 2009 and 2021, 21 patients with TN secondary to benign (n = 13) or malignant (n = 8) tumors underwent SRS. Barrow Neurological Institute (BNI) pain intensity scale scores were collected from patient electronic medical records at baseline, initial follow-up, and 1 and 3 years post-SRS. The interval change in BNI scale score (ΔBNI) at the various follow-up time points was also calculated to assess the durability of pain relief following SRS.The median follow-up period was 24 (range 0.5-155) months. Five patients (24%) received treatment to the trigeminal nerve only, 10 (48%) received treatment to the tumor only, and 6 (29%) had treatment to both the nerve and tumor. The overall radiation dosage ranged from 14 to 60 Gy delivered in 1-5 fractions, with a median overall dose of 26 Gy. The median dose to the tumor was 22.5 (range 14-35) Gy, delivered in 1-5 fractions. Of the treatments targeting the tumor, 25% were delivered in a single fraction with doses ranging from 14 to 20 Gy, 60% were delivered in 3 fractions with doses ranging from 18 to 27 Gy, and 15% were delivered in 5 fractions with doses ranging from 25 to 35 Gy. The most common dose regimen for tumor treatment was 24 Gy in 3 fractions. The median biologically effective dose (with an assumed alpha/beta ratio of 10 [BED10]) for tumor treatments was 43.1 (range 13.3-60.0) Gy. There was a significant difference in the proportion of patients with recurrent pain (ΔBNI score ≥ 0) at the time of last follow-up across the differing SRS treatment targets: trigeminal nerve only, tumor only, or both (p = 0.04). At the time of last follow-up, the median ΔBNI score after SRS to the nerve only was -1, 0 after SRS to tumor only, and -2 after SRS to both targets.SRS offers clinical symptomatic benefit to patients with TN secondary to tumor. For optimal pain relief and response durability, treatment targeting both the tumor and the trigeminal nerve appears to be most advantageous.

    View details for DOI 10.3171/2022.8.FOCUS22381

    View details for PubMedID 36321284

  • Mitigating the uncertainty in small field dosimetry by leveraging machine learning strategies. Physics in medicine and biology Zhao, W., Yang, Y., Xing, L., Chuang, C. F., Schüler, E. 2022

    Abstract

    Small field dosimetry is significantly different from the dosimetry of broad beams due to loss of electron side scatter equilibrium, source occlusion, and effects related to the choice of detector. However, use of small fields is increasing with the increase in indications for intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT), and thus the need for accurate dosimetry is ever more important. Here we propose to leverage machine learning (ML) strategies to reduce the uncertainties and increase the accuracy in determining small field output factors (OFs). Linac OFs from a Varian TrueBeam STx were calculated either by the treatment planning system (TPS) or measured with a W1 scintillator detector at various multi-leaf collimator (MLC) positions, jaw positions, and with and without contribution from leaf-end transmission. The fields were defined by the MLCs with the jaws at various positions. Field sizes between 5 and 100 mm were evaluated. Separate ML regression models were generated based on the TPS calculated or the measured datasets. Accurate predictions of small field OFs at different field sizes (FSs) were achieved independent of jaw and MLC position. A mean and maximum % relative error (RE) of 0.380.39% and 3.62%, respectively, for the best-performing models based on the measured datasets were found. The prediction accuracy was independent of contribution from leaf-end transmission. Several ML models for predicting small field OFs were generated, validated, and tested. Incorporating these models into the dose calculation workflow could greatly increase the accuracy and robustness of dose calculations for any radiotherapy delivery technique that relies heavily on small fields.

    View details for DOI 10.1088/1361-6560/ac7fd6

    View details for PubMedID 35803256

  • Implicit neural representation for radiation therapy dose distribution. Physics in medicine and biology Vasudevan, V., Shen, L., Huang, C., Chuang, C. F., Islam, M. T., Ren, H., Yang, Y., Dong, P., Xing, L. 2022

    Abstract

    OBJECTIVE: Dose distribution data plays a pivotal role in radiotherapy treatment planning. The data is typically represented using voxel grids, and its size ranges from 10^6--10^8. A concise representation of the treatment plan is of great value in facilitating treatment planning and downstream applications. This work aims to develop an implicit neural representation of 3D dose distribution data.APPROACH: Instead of storing the dose values at each voxel, in the proposed approach, the weights of a multilayer perceptron (MLP) are employed to characterize the dosimetric data for plan representation and subsequent applications. We train a coordinate-based MLP with sinusoidal activations to map the voxel spatial coordinates to the corresponding dose values. We identify the best architecture for a given parameter budget and use that to train a model for each patient. The trained MLP is evaluated at each voxel location to reconstruct the dose distribution. We perform extensive experiments on dose distributions of prostate, spine, and head and neck tumor cases to evaluate the quality of the proposed representation. We also study the change in representation quality by varying model size and activation function.MAIN RESULTS: Using coordinate-based MLPs with sinusoidal activations, we can learn implicit representations that achieve a mean-squared error of 10^{-6} and peak signal-to-noise ratio greater than 50 dB at a target bitrate of ~1 across all the datasets, with a compression ratio of ~32. Our results also show that model sizes with a bitrate of 1--2 achieve optimal accuracy. For smaller bitrates, performance starts to drop significantly.SIGNIFICANCE: The proposed model provides a low-dimensional, implicit, and continuous representation of 3D dose data. In summary, given a dose distribution, we systematically show how to find a compact model to fit the data accurately. This study lays the groundwork for future applications of neural representations of dose data in radiation oncology.

    View details for DOI 10.1088/1361-6560/ac6b10

    View details for PubMedID 35477171

  • Small field measurement and monte carlo model validation of a novel image-guided radiotherapy system. Medical physics Shi, M., Chuang, C. F., Kovalchuk, N., Bush, K. K., Zaks, D., Xing, L., Surucu, M., Han, B. 2021

    Abstract

    PURPOSE: The RefleXionTM X1 is a novel radiotherapy system that is designed for image-guided radiotherapy and, eventually, biology-guided radiotherapy (BgRT). BgRT is a treatment paradigm that tracks tumor motion using real-time positron emission signals. This study reports the small field measurement results and the validation of a Monte Carlo (MC) model of the first clinical RefleXion unit.METHODS: The RefleXion linear accelerator (linac) produces a 6 MV flattening filter free (FFF) photon beam and consists of a binary multi-leaf collimator (MLC) system with 64 leaves and two pairs of y-jaws. The maximum clinical field size achievable is 400 * 20 mm2 . The y-jaws provide either a 10 mm or 20 mm opening at source-to-axis distance (SAD) of 850 mm. The width of each MLC leaf at SAD is 6.25 mm. Percentage depth doses (PDDs) and relative beam profiles were acquired using an Edge diode detector in a water tank for field sizes from 12.5 * 10 mm2 to 100 * 20 mm2 . Beam profiles were also measured using films. Output factors of fields ranging from 6.25 * 10 mm2 to 100 * 20 mm2 were measured using W2 scintillator detector, Edge detector, and films. Output correction factors k of the Edge detector for RefleXion were calculated. A MC model of the linac including pre-MLC beam sources and detailed structures of MLC and lower y-jaws was validated against the measurements. Simulation codes BEAMnrc and GATE were utilized.RESULTS: The diode measured PDD at 10 cm depth (PDD10) increases from 53.6% to 56.9% as the field opens from 12.5 * 10 mm2 to 100 * 20 mm2 . The W2-measured output factor increases from 0.706 to 1 as the field opens from 6.25 * 10 mm2 to 100 * 20 mm2 (reference field size). The output factors acquired by diode and film differ from the W2 results by 1.65% (std = 1.49%) and 2.09% (std = 1.41%) on average, respectively. The profile penumbra and full width half maximum (FWHM) measured by diode agree well with the film results with a deviation of 0.60 mm and 0.73% on average, respectively. The averaged beam profile consistency calculated between the diode and film measured profiles among different depths is within 1.72%. By taking the W2 measurements as the ground truth, the output correction factors k for Edge detector ranging from 0.958 to 1 were reported. For the MC model validation, the simulated PDD10 agreed within 0.6% to the diode measurement. The MC simulated output factor differed from the W2 results by 2.3% on average (std = 3.7%) while the MC simulated beam penumbra differed from the diode results by 0.67 mm on average (std = 0.42 mm). The MC FWHM agreed with the diode results to within 1.40% on average. The averaged beam profile consistency calculated between the diode and MC profiles among different depths is less than 1.29%.CONCLUSIONS: This study represents the first small field dosimetry of a clinical RefleXion system. A complete and accurate MC model of the RefleXion linac has been validated. This article is protected by copyright. All rights reserved.

    View details for DOI 10.1002/mp.15273

    View details for PubMedID 34628666

  • Deep learning-enabled EPID-based 3D dosimetry for dose verification of step-and-shoot radiotherapy. Medical physics Jia, M., Wu, Y., Yang, Y., Wang, L., Chuang, C., Han, B., Xing, L. 2021

    Abstract

    PURPOSE: The study aims at a novel dosimetry methodology to reconstruct a 3D dose distribution as imparted to a virtual cylindrical phantom using an electronic portal imaging device (EPID).METHODS: A deep learning-based signal processing strategy, referred to as 3DosiNet, is utilized to learn a mapping from an EPID image to planar dose distributions at given depths. The network was trained with the volumetric dose exported from the clinical treatment planning system (TPS). Given the latent inconsistency between measurements and corresponding TPS calculations, unsupervised learning is formulated in 3DosiNet to capture abstractive image features that are less sensitive to the potential variations.RESULTS: Validation experiments were performed using five regular fields and three clinical IMRT cases. The measured dose profiles and percentage depth dose (PDD) curves were compared with those measured using standard tools in terms of the 1D gamma index. The mean gamma pass rates (2%/2mm) over the regular fields are 100% and 97.3% for the dose profile and PDD measurements, respectively. The measured volumetric dose was compared to corresponding TPS calculation in terms of the 3D gamma index. The mean 2% / 2mm gamma pass rates are 97.9% for square fields and 94.9% for the IMRT fields.CONCLUSIONS: The system promises to be a practical 3D dosimetric tool for pre-treatment patient-specific quality assurance and further developed for in-treatment patient dose monitoring. This article is protected by copyright. All rights reserved.

    View details for DOI 10.1002/mp.15218

    View details for PubMedID 34519365

  • Medical Physics Practice Guideline (MPPG) 11.a: Plan and chart review in external beam radiotherapy and brachytherapy. Journal of applied clinical medical physics Xia, P., Sintay, B. J., Colussi, V. C., Chuang, C., Lo, Y., Schofield, D., Wells, M., Zhou, S. 2021

    Abstract

    A therapeutic medical physicist is responsible for reviewing radiation therapy treatment plans and patient charts, including initial treatment plans and new chart review, on treatment chart (weekly) review, and end of treatment chart review for both external beam radiation and brachytherapy. Task group report TG 275 examined this topic using a risk-based approach to provide a thorough analysis and guidance for best practice. Considering differences in resources and workflows of various clinical practice settings, the Professional Council of the American Association of Physicists in Medicine assembled this task group to develop a practice guideline on the same topic to provide a minimum standard that balances an appropriate level of safety and resource utilization. This medical physics practice guidelines (MPPG) thus provides a concise set of recommendations for medical physicists and other clinical staff regarding the review of treatment plans and patient charts while providing specific recommendations about who to be involved, and when/what to check in the chart review process. The recommendations, particularly those related to the initial plan review process, are critical for preventing errors and ensuring smooth clinical workflow. We believe that an effective review process for high-risk items should include multiple layers with collective efforts across the department. Therefore, in this report, we make specific recommendations for various roles beyond medical physicists. The recommendations of this MPPG have been reviewed and endorsed by the American Society of Radiologic Technologists and the American Association of Medical Dosimetrists.

    View details for DOI 10.1002/acm2.13366

    View details for PubMedID 34342124

  • The Stanford stereotactic radiosurgery experience on 7000 patients over 2 decades (1999-2018): looking far beyond the scalpel. Journal of neurosurgery Fatima, N., Meola, A., Ding, V. Y., Pollom, E., Soltys, S. G., Chuang, C. F., Shahsavari, N., Hancock, S. L., Gibbs, I. C., Adler, J. R., Chang, S. D. 2021: 1–17

    Abstract

    OBJECTIVE: The CyberKnife (CK) has emerged as an effective frameless and noninvasive method for treating a myriad of neurosurgical conditions. Here, the authors conducted an extensive retrospective analysis and review of the literature to elucidate the trend for CK use in the management paradigm for common neurosurgical diseases at their institution.METHODS: A literature review (January 1990-June 2019) and clinical review (January 1999-December 2018) were performed using, respectively, online research databases and the Stanford Research Repository of patients with intracranial and spinal lesions treated with CK at Stanford. For each disease considered, the coefficient of determination (r2) was estimated as a measure of CK utilization over time. A change in treatment modality was assessed using a t-test, with statistical significance assessed at the 0.05 alpha level.RESULTS: In over 7000 patients treated with CK for various brain and spinal lesions over the past 20 years, a positive linear trend (r2 = 0.80) in the system's use was observed. CK gained prominence in the management of intracranial and spinal arteriovenous malformations (AVMs; r2 = 0.89 and 0.95, respectively); brain and spine metastases (r2 = 0.97 and 0.79, respectively); benign tumors such as meningioma (r2 = 0.85), vestibular schwannoma (r2 = 0.76), and glomus jugulare tumor (r2 = 0.89); glioblastoma (r2 = 0.54); and trigeminal neuralgia (r2 = 0.81). A statistically significant difference in the change in treatment modality to CK was observed in the management of intracranial and spinal AVMs (p < 0.05), and while the treatment of brain and spine metastases, meningioma, and glioblastoma trended toward the use of CK, the change in treatment modality for these lesions was not statistically significant.CONCLUSIONS: Evidence suggests the robust use of CK for treating a wide range of neurological conditions.

    View details for DOI 10.3171/2020.9.JNS201484

    View details for PubMedID 33799297

  • A robotically assisted 3D printed quality assurance lung phantom for Calypso. Physics in medicine and biology Capaldi, D. P., Skinner, L. B., Dubrowski, P. n., Zhang, H. n., Xing, L. n., Chuang, C. F., Loo, B. W., Bush, K. K., Fahimian, B. P., Yu, A. S. 2021

    Abstract

    Purpose:Radiation dose delivered to targets located near the upper-abdomen or in the thorax are significantly affected by respiratory-motion. Relatively large-margins are commonly added to compensate for this motion, limiting radiation-dose-escalation. Internal-surrogates of target motion, such as a radiofrequency (RF) tracking system, i.e. Calypso® System, are used to overcome this challenge and improve normal-tissue sparing. RF tracking systems consist of implanting transponders in the vicinity of the tumor to be tracked using radiofrequency-waves. Unfortunately, although the manufacture provides a universal quality-assurance (QA) phantom, QA-phantoms specifically for lung-applications are limited, warranting the development of alternative solutions to fulfil the tests mandated by AAPM's TG142. Accordingly, our objective was to design and develop a motion-phantom to evaluate Calypso for lung-applications that allows the Calypso® Beacons to move in different directions to better simulate true lung-motion.Methods and Materials:A Calypso lung QA-phantom was designed, and 3D-printed. The design consists of three independent arms where the transponders were attached. A pinpoint-chamber with a buildup-cap was also incorporated. A 4-axis robotic arm was programmed to drive the motion-phantom to mimic breathing. After acquiring a four-dimensional-computed-tomography (4DCT) scan of the motion-phantom, treatment-plans were generated and delivered on a Varian TrueBeam® with Calypso capabilities. Stationary and gated-treatment plans were generated and delivered to determine the dosimetric difference between gated and non-gated treatments. Portal cine-images were acquired to determine the temporal-accuracy of delivery by calculating the difference between the observed versus expected transponders locations with the known speed of the transponders' motion.Results:Dosimetric accuracy is better than TG142 tolerance of 2%. Temporal accuracy is greater than, TG142 tolerance of 100ms for beam-on, but less than 100ms for beam-hold.Conclusions:The robotic QA-phantom designed and developed in this study provides an independent phantom for performing Calypso lung-QA for commissioning and acceptance testing of Calypso for lung treatments.

    View details for DOI 10.1088/1361-6560/abebaa

    View details for PubMedID 33657537

  • ZAP-X: A Novel Radiosurgical Device for the Treatment of Trigeminal Neuralgia CUREUS Romanelli, P., Chuang, C., Meola, A., Bodduluri, R. M., Adler, J. R. 2020; 12 (5)
  • Clinical impact of the VOLO optimizer on treatment plan quality and clinical treatment efficiency for CyberKnife. Journal of applied clinical medical physics Schuler, E., Lo, A., Chuang, C. F., Soltys, S. G., Pollom, E. L., Wang, L. 2020

    Abstract

    With the recent CyberKnife treatment planning system (TPS) upgrade from Precision 1.0 to Precision 2.0, the new VOLO optimizer was released for plan optimization. The VOLO optimizer sought to overcome some of the limitations seen with the Sequential optimizer from previous TPS versions. The purpose of this study was to investigate the clinical impact of the VOLO optimizer on treatment plan quality and clinical treatment efficiency as compared to the Sequential optimizer. Treatment plan quality was evaluated in four categories of patients: Brain Simple (BS), Brain Complex (BC), Spine Complex (SC), and Prostate (PC). A total of 60 treatment plans were compared using both the Sequential and VOLO optimizers with Iris and MLC collimation with the same clinical constraints. Metrics evaluated included estimated treatment time, monitor units (MUs) delivered, conformity index (CI), and gradient index (GI). Furthermore, the clinical impact of the VOLO optimizer was evaluated through statistical analysis of the patient population treated during the 4months before (n=297) and 4months after (n=285) VOLO introduction. Significant MU and time reductions were observed for all four categories planned. MU reduction ranged from -14% (BS Iris) to -52% (BC MLC), and time reduction ranged from -11% (BS Iris) to -22% (BC MLC). The statistical analysis of patient population before and after VOLO introduction for patients using 6D Skull tracking with fixed cone, 6D Skull tracking with Iris, and Xsight Spine tracking with Iris were -4.6%, -22.2%, and -17.8% for treatment time reduction, -1.1%, -22.0%, and -28.4% for beam reduction and -3.2%, -21.8%, and -28.1% for MU reduction, respectively. The VOLO optimizer maintains or improves the plan quality while decreases the plan complexity and improves treatment efficiency. We anticipate an increase in patient throughput with the introduction of the VOLO optimizer.

    View details for DOI 10.1002/acm2.12851

    View details for PubMedID 32212374

  • Successful Use of Frameless Stereotactic Radiosurgery for Treatment of Recurrent Brain Metastases in an 18 Month Old Child. The International journal of neuroscience Rahimy, E., Chuang, C., Spunt, S. L., Mahaney, K., Donaldson, S. S., Gibbs, I. C., Soltys, S. G., Pollom, E., Hiniker, S. M. 2019: 1–6

    Abstract

    There are very few reported cases of stereotactic radiosurgery delivered in children under 3 years of age. We report an 18 month old boy with metastatic recurrence of undifferentiated round cell sarcoma to the brain which was treated with chemotherapy, resection, and robotic frameless stereotactic radiosurgery (SRS). Frameless SRS was delivered without technical difficulties, acute adverse events, or clinical sequelae 1.5 months post-radiation. Longer term follow-up will be needed to evaluate local tumor control and effects on neurocognitive development, endocrine function, and growth. This report adds to the literature of the few reported cases of successfully attempted SRS in very young children.

    View details for DOI 10.1080/00207454.2019.1655015

    View details for PubMedID 31401906

  • Optimizing beam models for dosimetric accuracy over a wide range of treatments. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) Chen, J., Morin, O., Weethee, B., Perez-Andujar, A., Phillips, J., Held, M., Kearney, V., Han, D. Y., Cheung, J., Chuang, C., Valdes, G., Sudhyadhom, A., Solberg, T. 2019; 58: 47-53

    Abstract

    This work presents a systematic approach for testing a dose calculation algorithm over a variety of conditions designed to span the possible range of clinical treatment plans. Using this method, a TrueBeam STx machine with high definition multi-leaf collimators (MLCs) was commissioned in the RayStation treatment planning system (TPS). The initial model parameters values were determined by comparing TPS calculations with standard measured depth dose and profile curves. The MLC leaf offset calibration was determined by comparing measured and calculated field edges utilizing a wide range of MLC retracted and over-travel positions. The radial fluence was adjusted using profiles through both the center and corners of the largest field size, and through measurements of small fields that were located at highly off-axis positions. The flattening filter source was adjusted to improve the TPS agreement for the output of MLC-defined fields with much larger jaw openings. The MLC leaf transmission and leaf end parameters were adjusted to optimize the TPS agreement for highly modulated intensity-modulated radiotherapy (IMRT) plans. The final model was validated for simple open fields, multiple field configurations, the TG 119 C-shape target test, and a battery of clinical IMRT and volumetric-modulated arc therapy (VMAT) plans. The commissioning process detected potential dosimetric errors of over 10% and resulted in a final model that provided in general 3% dosimetric accuracy. This study demonstrates the importance of using a variety of conditions to adjust a beam model and provides an effective framework for achieving high dosimetric accuracy.

    View details for DOI 10.1016/j.ejmp.2019.01.011

    View details for PubMedID 30824149

  • Non-local total-variation (NLTV) minimization combined with reweighted L1-norm for compressed sensing CT reconstruction PHYSICS IN MEDICINE AND BIOLOGY Kim, H., Chen, J., Wang, A., Chuang, C., Held, M., Pouliot, J. 2016; 61 (18): 6878–91

    Abstract

    The compressed sensing (CS) technique has been employed to reconstruct CT/CBCT images from fewer projections as it is designed to recover a sparse signal from highly under-sampled measurements. Since the CT image itself cannot be sparse, a variety of transforms were developed to make the image sufficiently sparse. The total-variation (TV) transform with local image gradient in L1-norm was adopted in most cases. This approach, however, which utilizes very local information and penalizes the weight at a constant rate regardless of different degrees of spatial gradient, may not produce qualified reconstructed images from noise-contaminated CT projection data. This work presents a new non-local operator of total-variation (NLTV) to overcome the deficits stated above by utilizing a more global search and non-uniform weight penalization in reconstruction. To further improve the reconstructed results, a reweighted L1-norm that approximates the ideal sparse signal recovery of the L0-norm is incorporated into the NLTV reconstruction with additional iterates. This study tested the proposed reconstruction method (reweighted NLTV) from under-sampled projections of 4 objects and 5 experiments (1 digital phantom with low and high noise scenarios, 1 pelvic CT, and 2 CBCT images). We assessed its performance against the conventional TV, NLTV and reweighted TV transforms in the tissue contrast, reconstruction accuracy, and imaging resolution by comparing contrast-noise-ratio (CNR), normalized root-mean square error (nRMSE), and profiles of the reconstructed images. Relative to the conventional NLTV, combining the reweighted L1-norm with NLTV further enhanced the CNRs by 2-4 times and improved reconstruction accuracy. Overall, except for the digital phantom with low noise simulation, our proposed algorithm produced the reconstructed image with the lowest nRMSEs and the highest CNRs for each experiment.

    View details for DOI 10.1088/0031-9155/61/18/6878

    View details for Web of Science ID 000384317800002

    View details for PubMedID 27589006

  • Comparison between prone and supine patient setup for spine stereotactic body radiosurgery. Technology in cancer research & treatment Descovich, M., Ma, L., Chuang, C. F., Larson, D. A., Barani, I. J. 2012; 11 (3): 229-36

    Abstract

    This paper investigates the dosimetric characteristics of stereotactic body radiotherapy (SBRT) treatment plans of spine patients in the prone position compared to the supine position. A feasibility study for treating spine patients in the prone position using a fiducial-less tracking method is presented. One patient with a multilevel spinal metastasis was simulated for SBRT treatment in both the supine and prone position. CT scans of the patient were acquired, and treatment plans were created using the CyberKnife® planning platform. The potential advantage of the prone setup as a function of lesion location and number of vertebral bodies involved was studied for targets extending over 1, 2 and 3 consecutive vertebral bodies in the thoracic and lumbar spine. The same process was repeated on an anthropomorphic phantom. A dose of 30 Gy in 5 fractions was prescribed to 95% of the tumor volume and the dose to the cord was limited to 25 Gy. To investigate the feasibility of a fiducial-less tracking method in the prone setup, the patient was positioned prone on the treatment table and the spine motion was monitored as a function of time. Patient movement with the respiratory cycle was reduced by means of a belly-board. Plans in the prone and supine position achieved similar tumor coverage and sparing of the critical structures immediately adjacent to the spine (such as cord and esophagus). However, the prone plans systematically resulted in a lower dose to the normal structures located in the anterior part of the body (such as heart for thoracic cases; stomach, lower gastrointestinal tract and liver for lumbar cases). In addition, prone plans resulted in a lower number of monitor units compared to supine plans.

    View details for DOI 10.7785/tcrt.2012.500291

    View details for PubMedID 22468994

  • Stereotactic body radiotherapy as monotherapy or post-external beam radiotherapy boost for prostate cancer: technique, early toxicity, and PSA response. International journal of radiation oncology, biology, physics Jabbari, S., Weinberg, V. K., Kaprealian, T., Hsu, I. C., Ma, L., Chuang, C., Descovich, M., Shiao, S., Shinohara, K., Roach, M., Gottschalk, A. R. 2012; 82 (1): 228-34

    Abstract

    High dose rate (HDR) brachytherapy has been established as an excellent monotherapy or after external-beam radiotherapy (EBRT) boost treatment for prostate cancer (PCa). Recently, dosimetric studies have demonstrated the potential for achieving similar dosimetry with stereotactic body radiotherapy (SBRT) compared with HDR brachytherapy. Here, we report our technique, PSA nadir, and acute and late toxicity with SBRT as monotherapy and post-EBRT boost for PCa using HDR brachytherapy fractionation.To date, 38 patients have been treated with SBRT at the University of California-San Francisco with a minimum follow-up of 12 months. Twenty of 38 patients were treated with SBRT monotherapy (9.5 Gy × 4 fractions), and 18 were treated with SBRT boost (9.5 Gy × 2 fractions) post-EBRT and androgen deprivation therapy. PSA nadir to date for 44 HDR brachytherapy boost patients with disease characteristics similar to the SBRT boost cohort was also analyzed as a descriptive comparison.SBRT was well tolerated. With a median follow-up of 18.3 months (range, 12.6-43.5), 42% and 11% of patients had acute Grade 2 gastrourinary and gastrointestinal toxicity, respectively, with no Grade 3 or higher acute toxicity to date. Two patients experienced late Grade 3 GU toxicity. All patients are without evidence of biochemical or clinical progression to date, and favorably low PSA nadirs have been observed with a current median PSA nadir of 0.35 ng/mL (range, <0.01-2.1) for all patients (0.47 ng/mL, range, 0.2-2.1 for the monotherapy cohort; 0.10 ng/mL, range, 0.01-0.5 for the boost cohort). With a median follow-up of 48.6 months (range, 16.4-87.8), the comparable HDR brachytherapy boost cohort has achieved a median PSA nadir of 0.09 ng/mL (range, 0.0-3.3).Early results with SBRT monotherapy and post-EBRT boost for PCa demonstrate acceptable PSA response and minimal toxicity. PSA nadir with SBRT boost appears comparable to those achieved with HDR brachytherapy boost.

    View details for DOI 10.1016/j.ijrobp.2010.10.026

    View details for PubMedID 21183287

  • Erratum: "Report of AAPM TG 135: Quality assurance for robotic radiosurgery". Medical physics Dieterich, S., Cavedon, C., Chuang, C. F., Cohen, A. B., Garrett, J. A., Lee, C. L., Lowenstein, J. R., D'Souza, M. F., Taylor, D. D., Wu, X., Yu, C. 2011; 38 (9): 5264

    View details for DOI 10.1118/1.3626480

    View details for PubMedID 28524974

  • Report of AAPM TG 135: Quality assurance for robotic radiosurgery (vol 38, pg 2914, 2011) MEDICAL PHYSICS Dieterich, S., Cavedon, C., Chuang, C. F., Cohen, A. B., Garrett, J. A., Lee, C. L., Lowenstein, J. R., d'Souza, M. F., Taylor, D. D., Wu, X., Yu, C. 2011; 38 (9): 5264-5264

    View details for DOI 10.1118/1.3626480

    View details for Web of Science ID 000294482900036

  • A two-dimensional deformable phantom for quantitatively verifying deformation algorithms. Medical physics Kirby, N., Chuang, C., Pouliot, J. 2011; 38 (8): 4583-6

    Abstract

    The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques.The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy.An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%.The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this verification technique.

    View details for DOI 10.1118/1.3597881

    View details for PubMedID 21928631

  • Report of AAPM TG 135: Quality assurance for robotic radiosurgery MEDICAL PHYSICS Dieterich, S., Cavedon, C., Chuang, C. F., Cohen, A. B., Garrett, J. A., Lee, C. L., Lowenstein, J. R., d'Souza, M. F., Taylor, D. D., Wu, X., Yu, C. 2011; 38 (6): 2914-2936

    Abstract

    The task group (TG) for quality assurance for robotic radiosurgery was formed by the American Association of Physicists in Medicine's Science Council under the direction of the Radiation Therapy Committee and the Quality Assurance (QA) Subcommittee. The task group (TG-135) had three main charges: (1) To make recommendations on a code of practice for Robotic Radiosurgery QA; (2) To make recommendations on quality assurance and dosimetric verification techniques, especially in regard to real-time respiratory motion tracking software; (3) To make recommendations on issues which require further research and development. This report provides a general functional overview of the only clinically implemented robotic radiosurgery device, the CyberKnife. This report includes sections on device components and their individual component QA recommendations, followed by a section on the QA requirements for integrated systems. Examples of checklists for daily, monthly, annual, and upgrade QA are given as guidance for medical physicists. Areas in which QA procedures are still under development are discussed.

    View details for DOI 10.1118/1.3579139

    View details for Web of Science ID 000291405200011

    View details for PubMedID 21815366

  • Stereotactic body radiotherapy is effective salvage therapy for patients with prior radiation of spinal metastases. International journal of radiation oncology, biology, physics Sahgal, A., Ames, C., Chou, D., Ma, L., Huang, K., Xu, W., Chin, C., Weinberg, V., Chuang, C., Weinstein, P., Larson, D. A. 2009; 74 (3): 723-31

    Abstract

    To provide actuarial outcomes and dosimetric data for spinal/paraspinal metastases, with and without prior radiation, treated with stereotactic body radiotherapy (SBRT).A total of 39 consecutive patients (60 metastases) were treated with SBRT between April 2003 and August 2006 and retrospectively reviewed. In all, 23 of 60 tumors had no previous radiation (unirradiated) and 37/60 tumors had previous irradiation (reirradiated). Of 37 reirradiated tumors, 31 were treated for "salvage" given image-based tumor progression. Local failure was defined as progression by imaging and/or clinically.At last follow-up, 19 patients were deceased. Median patient survival time measured was 21 months (95% CI = 8-27 months), and the 2-year survival probability was 45%. The median total dose prescribed was 24 Gy in three fractions prescribed to the 67% and 60% isodose for the unirradiated and reirradiated cohorts, respectively. The median tumor follow-up for the unirradiated and reirradiated group was 9 months (range, 1-26) and 7 months (range, 1-48) respectively. Eight of 60 tumors have progressed, and the 1- and 2-year progression-free probability (PFP) was 85% and 69%, respectively. For the salvage group the 1 year PFP was 96%. There was no significant difference in overall survival or PFP between the salvage reirradiated vs. all other tumors treated (p = 0.08 and p = 0.31, respectively). In six of eight failures the minimum distance from the tumor to the thecal sac was or=6 months follow-up and no radiation-induced myelopathy or radiculopathy has occurred.Spine SBRT has shown preliminary efficacy and safety in patients with image-based progression of previously irradiated metastases.

    View details for DOI 10.1016/j.ijrobp.2008.09.020

    View details for PubMedID 19095374

  • Whole-procedure clinical accuracy of Gamma Knife treatments of large lesions Ma, L., Chuang, C., Descovich, M., Petti, P., Smith, V., Verhey, L. WILEY. 2008: 5110-5114

    Abstract

    The mechanical accuracy of Gamma Knife radiosurgery based on single-isocenter measurement has been established to within 0.3 mm. However, the full delivery accuracy for Gamma Knife treatments of large lesions has only been estimated via the quadrature-sum analysis. In this study, the authors directly measured the whole-procedure accuracy for Gamma Knife treatments of large lesions to examine the validity of such estimation. The measurements were conducted on a head-phantom simulating the whole treatment procedure that included frame placement, computed tomography imaging, treatment planning, and treatment delivery. The results of the measurements were compared with the dose calculations from the treatment planning system. Average agreements of 0.1-1.6 mm for the isodose lines ranging from 25% to 90% of the maximum dose were found despite potentially large contributing uncertainties such as 3-mm imaging resolution, 2-mm dose grid size, 1-mm frame registration, multi-isocenter deliveries, etc. The results of our measurements were found to be significantly smaller (>50%) than the calculated value based on the quadrature-sum analysis. In conclusion, Gamma Knife treatments of large lesions can be delivered much more accurately than predicted from the quadrature-sum analysis of major sources of uncertainties from each step of the delivery chain.

    View details for DOI 10.1118/1.2987669

    View details for Web of Science ID 000260484400038

    View details for PubMedID 19070245

  • Simulated real time image guided intrafraction tracking-delivery for hypofractionated prostate IMRT MEDICAL PHYSICS Hossain, S., Xia, P., Chuang, C., Verhey, L., Gottschalk, A. R., Mu, G., Ma, L. 2008; 35 (9): 4041-4048

    Abstract

    Hypofractionated stereotactic body radiotherapy (SBRT) has been tested for prostate cancer radiotherapy. This study aims to investigate the dosimetric effects of intrafraction prostate motion on the target and the normal structures for SBRT. For prostate cancer patients treated with an image-tracking CyberKnife system, the intrafraction prostate movements were recorded during 50-70 min treatment time. Based on the recorded intrafraction prostate movements, treatment plans were created for these cases using intensity modulated beams while scaling the average time patterns from the CyberKnife treatment to simulate hypofractionated intensity modulated radiotherapy (IMRT) delivery. The effect of delivery time on the intrafraction organ motion was investigated. For a nominal single fraction delivery of 9.5 Gy with IMRT, we found that the dosimetric effect of the intrafraction prostate movement is case dependent. For most cases, the dose volume histograms exhibited very small changes from the treatment plans that assumed no intrafractional prostate motion when the maximum intrafraction movements were within +/-5 mm. However, when sporadic prostate movements greater than 5 mm were present in any one direction, significant changes were found. For example, the V100, for the prostate could be reduced by more than 10% to less than 85% of the prostate volume coverage. If these large movements could be excluded by some active correction strategies, then the average V100% for the simulated plan could be restored to within approximately 2% of the ideal treatment plans. On average, the sporadic intrafraction motion has less dosimetric impact on the prolonged treatment delivery versus fast treatment delivery. For example, the average V100% for the clinical target volume was reduced from the original 95.1% to 92.1 +/- 3.7% for prolonged treatment, and to 91.3 +/- 5.4% when the treatment time was shortened by 50%. Due to the observed large sporadic prostate motions, we conclude that an on-line target motion monitoring and correction strategy is necessary to implement hypofractionated SBRT with intensity modulated beams for prostate cancer treatments.

    View details for DOI 10.1118/1.2968333

    View details for Web of Science ID 000258773000025

    View details for PubMedID 18841856

  • Split-volume treatment planning of multiple consecutive vertebral body metastases for Cyberknife image-guided robotic radiosurgery Sahgal, A., Chuang, C., Larson, D., Huang, K., Petti, P., Weinstein, P., Ma, L. ELSEVIER SCIENCE INC. 2008: 175-179

    Abstract

    Cyberknife treatment planning of multiple consecutive vertebral body metastases is challenging due to large target volumes adjacent to critical normal tissues. A split-volume treatment planning technique was developed to improve the treatment plan quality of such lesions. Treatment plans were generated for 1 to 5 consecutive thoracic vertebral bodies (CVBM) prescribing a total dose of 24 Gy in 3 fractions. The planning target volume (PTV) consisted of the entire vertebral body(ies). Treatment plans were generated considering both the de novo clinical scenario (no prior radiation), imposing a dose limit of 8 Gy to 1 cc of spinal cord, and the retreatment scenario (prior radiation) with a dose limit of 3 Gy to 1 cc of spinal cord. The split-volume planning technique was compared with the standard full-volume technique only for targets ranging from 2 to 5 CVBM in length. The primary endpoint was to obtain best PTV coverage by the 24 Gy prescription isodose line. A total of 18 treatment plans were generated (10 standard and 8 split-volume). PTV coverage by the 24-Gy isodose line worsened consistently as the number of CVBM increased for both the de novo and retreatment scenario. Split-volume planning was achieved by introducing a 0.5-cm gap, splitting the standard full-volume PTV into 2 equal length PTVs. In every case, split-volume planning resulted in improved PTV coverage by the 24-Gy isodose line ranging from 4% to 12% for the de novo scenario and, 8% to 17% for the retreatment scenario. We did not observe a significant trend for increased monitor units required, or higher doses to spinal cord or esophagus, with split-volume planning. Split-volume treatment planning significantly improves Cyberknife treatment plan quality for CVBM, as compared to the standard technique. This technique may be of particular importance in clinical situations where stringent spinal cord dose limits are required.

    View details for DOI 10.1016/j.meddos.2007.04.010

    View details for Web of Science ID 000258568400002

    View details for PubMedID 18674681

  • Intensity-modulated chemoradiation for treatment of stage III and IV oropharyngeal carcinoma - The University of California-San Francisco experience CANCER Huang, K., Xia, P., Chuang, C., Weinberg, V., Glastonbury, C. M., Eisele, D. W., Lee, N. Y., Yom, S. S., Phillips, T. L., Quivey, J. M. 2008; 113 (3): 497-507

    Abstract

    Treatment outcomes for stage III and IV oropharyngeal carcinoma treated with intensity-modulated radiotherapy (IMRT) and concurrent chemotherapy without prior surgical resection were reviewed.Between April 2000 and September 2004, 71 patients underwent IMRT concurrent with chemotherapy without prior surgical resection for stage III and IV oropharyngeal carcinoma. Chemotherapy was platinum based. The gross tumor volume (GTV) received 70 Gy in 2.12 Gy per fraction. The high-risk clinical tumor volume (CTV) received 59.4 Gy in 1.80 Gy per fraction, and the low-risk CTV received 54 Gy in 1.64 Gy per fraction.With a median follow-up of 33 months, the 3-year local, regional, and locoregional progression-free probabilities were 94%, 94%, and 90%, respectively. The 3-year overall survival estimate was 83%. Locoregional failures occurred in the GTV in 7 patients. Acute grade 3 or 4 toxicity developed in 35 patients. A feeding gastrostomy was placed in 25 patients. Late xerostomia was grade 0 in 16 patients, grade 1 in 31 patients, and grade 2 in 24 patients at last follow-up. No patients experienced grade 3 or 4 late toxicity, except for 1 who developed osteoradionecrosis of the mandible.Excellent local and regional control was achieved with IMRT and concurrent chemotherapy without prior surgical resection in the treatment of stage III and IV oropharyngeal carcinoma. Significant sparing of the parotid glands and other critical normal tissues was possible using IMRT with moderate acute toxicities and minimal severe late effects.

    View details for DOI 10.1002/cncr.23578

    View details for Web of Science ID 000257825700008

    View details for PubMedID 18521908

  • Peripheral dose measurement for CyberKnife radiosurgery with upgraded linac shielding MEDICAL PHYSICS Chuang, C. F., Larson, D. A., Zytkovicz, A., Smith, V., Petti, P. L. 2008; 35 (4): 1494-1496

    Abstract

    The authors investigated the peripheral dose reduction for CyberKnife radiosurgery treatments after the installation of a linac shielding upgrade. As in a previous investigation, the authors considered two treatment plans, one for a hypothetical target in the brain and another for a target in the thorax, delivered to an anthropomorphic phantom. The results of the prior investigation showed that the CyberKnife delivered significantly higher peripheral doses than comparable model C Gamma Knife or IMRT treatments. Current measurements, after the linac shielding upgrade, demonstrate that the additional shielding decreased the peripheral dose, expressed as a percentage of the delivered monitor units (MU), by a maximum of 59%. The dose reduction was greatest for cranial-caudal distances from the field edge less than 30 cm, and at these distances, the CyberKnife peripheral dose, expressed as a percentage of the delivered MU, is now comparable to that measured for the other treatment modalities in our previous investigation. For distances between 30 and 70 cm from the field edge, the additional shielding reduced the peripheral dose by between 20% and 55%. At these distances, the CyberKnife peripheral dose remains higher than doses measured in our previous study for the model C Gamma Knife and IMRT.

    View details for DOI 10.1118/1.2889620

    View details for Web of Science ID 000254510700038

    View details for PubMedID 18491544

  • Image-guided robotic stereotactic body radiotherapy for benign spinal tumors: The University of California San Francisco preliminary experience TECHNOLOGY IN CANCER RESEARCH & TREATMENT Sahgal, A., Chou, D., Ames, C., Ma, L., Lamborn, K., Huang, K., Chuang, C., Aiken, A., Petti, P., Weinstein, P., Larson, D. 2007; 6 (6): 595-603

    Abstract

    We evaluate our preliminary experience using the Cyberknife Radiosurgery System in treating benign spinal tumors. A retrospective review of 16 consecutively treated patients, comprising 19 benign spinal tumors, was performed. Histologic types included neurofibroma [11], chordoma [4], hemangioma [2], and meningioma [2]. Three patients had Neurofibromatosis Type 1 (NF1). Only one tumor, recurrent chordoma, had been previously irradiated, and as such not considered in the local failure analysis. Local failure, for the remaining 18 tumors, was based clinically on symptom progression and/or tumor enlargement based on imaging. Indications for spine stereotactic body radiotherapy (SBRT) consisted of either adjuvant to subtotal resection (5/19), primary treatment alone (12/19), boost following external beam radiotherapy (1/19), and salvage following previous radiation (1/19). Median tumor follow-up is 25 months (2-37), and one patient (with NF1) died at 12 months from a stroke. The median total dose, number of fractions, and prescription isodose was 21 Gy (10-30 Gy), 3 fx (1-5 fx), 80% (42-87%). The median tumor volume was 7.6 cc (0.2-274.1 cc). The median V100 (volume V receiving 100% of the prescribed dose) and maximum tumor dose was 95% (77-100%) and 26.7 Gy (15.4-59.7 Gy), respectively. Three tumors progressed at 2, 4, and 36 months post-SR (n=18). Two tumors were neurofibromas (both in NF1 patients), and the third was an intramedullary hemangioblastoma. Based on imaging, two tumors had MRI documented progression, three had regressed, and 13 were unchanged (n=18). With short follow-up, local control following Cyberknife spine SBRT for benign spinal tumors appear acceptable.

    View details for DOI 10.1177/153303460700600602

    View details for Web of Science ID 000251949300002

    View details for PubMedID 17994789

  • Effects of residual target motion for image-tracked spine radiosurgery. Medical physics Chuang, C., Sahgal, A., Lee, L., Larson, D., Huang, K., Petti, P., Verhey, L., Ma, L. 2007; 34 (11): 4484-90

    Abstract

    A quality assurance method was developed to investigate the effects of residual target motion for hypofractionated spine radiosurgery. The residual target motion (target movement between successive image-guided corrections) was measured on-line via dual x-ray imagers for patients treated with CyberKnife (Accuray, Inc., Sunnyvale, CA), a robotic linear accelerator with intrafractional image-tracking capability. The six degree-of-freedom characteristics of the residual target motion were analyzed, the effects of such motion on patient treatment delivery were investigated by incorporating the probability distribution of the residual motion into the treatment planning dose calculations, and deviations of the doses from those originally planned were calculated. Measurements using a programmable motion phantom were also carried out and compared with the static treatment plan calculations. It was found that the residual target motions were patient specific and typically on the order of 2 mm. The measured dose distributions incorporating the residual target motion also exhibited 2.0 mm discrepancy at the prescription isodose level when compared with the static treatment plan calculations. For certain patients, residual errors introduced significant uncertainties (-1 Gy) for the dose delivered to the spinal cord, especially at the high dose levels covering a small volume of the spinal cord (e.g., 0.1 cc). In such cases, stringent cord constraints and frequent monitoring of the target position should be implemented.

    View details for DOI 10.1118/1.2790587

    View details for PubMedID 18072513

  • The cyberknife: Practical experience with treatment planning and delivery Smith, V., Chuang, C. F., Meyer, J. L., Kavanagh, B. D., Purdy, J. A., Timmerman, R. KARGER. 2007: 143-161

    Abstract

    The Cyberknife Robotic Radiosurgery System is used at the University of California at San Francisco to provide stereotactic treatments to a range of lesions throughout the body. Image guidance is an integral part of this system and is used in every treatment to provide adaptive control during the treatment. Clinical examples are given for various types of lesions using the different image guidance techniques that are available with this technology.

    View details for DOI 10.1159/000106033

    View details for Web of Science ID 000248596600009

    View details for PubMedID 17641507

  • Skin toxicity due to intensity-modulated radiotherapy for head-and-neck carcinoma. International journal of radiation oncology, biology, physics Lee, N., Chuang, C., Quivey, J. M., Phillips, T. L., Akazawa, P., Verhey, L. J., Xia, P. 2002; 53 (3): 630-7

    Abstract

    To investigate the cause of acute skin toxicity observed in the treatment of head-and-neck cancer with extended-field intensity-modulated radiotherapy (EF-IMRT).EF-IMRT was used to treat head-and-neck cancer, with the gross target volume receiving 70 Gy and the clinical target volume 60 Gy. A thermoplastic mask covering the head, neck, and shoulder was used for immobilization. Dosimetric studies were conducted to investigate the possible causes of the skin reactions, such as the bolus effect of the mask, the use of multiple tangential beams with IMRT plans, and the way in which the physicians contoured the lymph nodes. The dose-volume histograms of conventional opposed-lateral fields were compared with that of the multiple tangential EF-IMRT fields. IMRT plans with neck nodes contoured up to and including the skin surface were compared with plans that contoured the neck nodes 5 mm away from the skin surface. In addition, IMRT plans defining the skin as a sensitive structure were compared with plans that did not define the skin as a sensitive structure. All plans were created using an anthropomorphic Rando phantom, and the skin doses were measured with and without the mask. In each measurement, 6 thermoluminescent dosimeters (TLDs) were placed at the lateral and medial surfaces of the neck.For all four plans, the measured skin doses with the mask were consistently higher than those without the mask. The average dose increase was about 18% owing to the bolus effect of the mask. Multiple tangential fields used in IMRT plans contributed to an increase in skin dose by about 19% and 27%, with and without the mask, respectively. If the skin of the neck was contoured as a sensitive structure for dose optimization, the volume of skin that received >45 Gy was further reduced by about 20%. Five patients immobilized with head and shoulder masks were treated with EF-IMRT plans with the neck nodes carefully delineated away from the skin surface. The neck skin was identified as a sensitive structure for dose optimization. Grade 1 toxicity was observed in 3 patients, Grade 2 in 1 patient, and Grade 3 in 1 patient toward the end of treatment.Multiple factors contributed to the observed acute skin reaction for head-and-neck cancer patients treated with EF-IMRT. By taking into consideration the skin as a sensitive structure during inverse planning, it was possible to reduce the skin dose to a tolerable level without compromising tumor target coverage.

    View details for DOI 10.1016/s0360-3016(02)02756-6

    View details for PubMedID 12062606