All Publications


  • Rapid climate change alters the environment and biological production of the Indian Ocean. The Science of the total environment Dalpadado, P., Roxy, M. K., Arrigo, K. R., van Dijken, G. L., Chierici, M., Ostrowski, M., Skern-Mauritzen, R., Bakke, G., Richardson, A. J., Sperfeld, E. 2023: 167342

    Abstract

    We synthesize and review the impacts of climate change on the physical, chemical, and biological environments of the Indian Ocean and discuss mitigating actions and knowledge gaps. The most recent climate scenarios identify with high certainty that the Indian Ocean (IO) is experiencing one of the fastest surface warming among the world's oceans. The area of surface waters of >28 °C (IO Warm Pool) has significantly increased during 2012-2021 by expanding into the northern-central basins. A significant decrease in pH and aragonite (building blocks of calcified organisms) levels in the IO was observed from 1981 to 2020 due to an increase in atmospheric CO2 concentrations. There are also signals of decreasing trends in primary productivity in the north, likely related to enhanced stratification and nutrient depletion. Further, the rapid warming of the IO will manifest more extreme weather conditions along its adjacent continents and oceans, including marine heat waves that are likely to reshape biodiversity. However, the impact of climate change beyond the unprecedented warming, increase in marine heat waves, expansion of the IO Warm Pool, and decrease in pH, remains uncertain for many other key variables in the IO including changes in salinity, oxygen, and net primary production. Understanding the response of these physical, chemical, and biological variables to climate change is vital to project future changes in regional fisheries and identify mitigation actions. We accordingly conclude by identifying knowledge gaps and recommending directions for sustainable fisheries and climate impact studies.

    View details for DOI 10.1016/j.scitotenv.2023.167342

    View details for PubMedID 37758130

  • Spatial and Interannual Variability of Antarctic Sea Ice Bottom Algal Habitat, 2004-2019 JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Lim, S. M., van Dijken, G. L., Arrigo, K. R. 2023; 128 (9)
  • Sensitivity of the Relationship Between Antarctic Ice Shelves and Iron Supply to Projected Changes in the Atmospheric Forcing JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Dinniman, M. S., St-Laurent, P., Arrigo, K. R., Hofmann, E. E., van Dijken, G. L. 2023; 128 (2)
  • Linking multiple stressor science to policy opportunities through network modeling MARINE POLICY Wedding, L. M., Green, S. J., Reiter, S., Arrigo, K. R., Hazen, L., Ruckelshaus, M., van der Grient, J. A., Bailey, R. M., Cameron, M. A., Leape, J., Levi, M., Merkl, A., Mills, M. M., Monismith, S., Ouellette, N. T., van Dijken, G., Micheli, F. 2022; 146
  • Wildfire aerosol deposition likely amplified a summertime Arctic phytoplankton bloom COMMUNICATIONS EARTH & ENVIRONMENT Ardyna, M., Hamilton, D. S., Harmel, T., Lacour, L., Bernstein, D. N., Laliberte, J., Horvat, C., Laxenaire, R., Mills, M. M., van Dijken, G., Polyakov, I., Claustre, H., Mahowald, N., Arrigo, K. 2022; 3 (1)
  • North-South Differences in Under-Ice Primary Production in the Chukchi Sea From 1988 to 2018 JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Payne, C. M., van Dijken, G. L., Arrigo, K. R. 2022; 127 (7)
  • Springtime phytoplankton responses to light and iron availability along the western Antarctic Peninsula LIMNOLOGY AND OCEANOGRAPHY Joy-Warren, H. L., Alderkamp, A., van Dijken, G. L., Jabre, L., Bertrand, E. M., Baldonado, E. N., Glickman, M. W., Lewis, K. M., Middag, R., Seyitmuhammedov, K., Lowry, K. E., van de Poll, W., Arrigo, K. R. 2022

    View details for DOI 10.1002/lno.12035

    View details for Web of Science ID 000755549000001

  • The distribution of Fe across the shelf of the Western Antarctic Peninsula at the start of the phytoplankton growing season MARINE CHEMISTRY Seyitmuhammedov, K., Stirling, C. H., Reid, M. R., van Hale, R., Laan, P., Arrigo, K. R., van Dijken, G., Alderkamp, A., Middag, R. 2022; 238
  • Increases in Arctic sea ice algal habitat, 1985-2018 Elementa: Science of the Anthropocene Lim, S. M., Payne, C. M., van Dijken, G. L., Arrigo, K. R. 2022; 10 (1)
  • Warming of the Indian Ocean and its impact on temporal and spatial dynamics of primary production PROGRESS IN OCEANOGRAPHY Dalpadado, P., Arrigo, K. R., van Dijken, G. L., Gunasekara, S. S., Ostrowski, M., Bianchi, G., Sperfeld, E. 2021; 198
  • UCYN-A/haptophyte symbioses dominate N2 fixation in the Southern California Current System. ISME communications Turk-Kubo, K. A., Mills, M. M., Arrigo, K. R., van Dijken, G., Henke, B. A., Stewart, B., Wilson, S. T., Zehr, J. P. 2021; 1 (1): 42

    Abstract

    The availability of fixed nitrogen (N) is an important factor limiting biological productivity in the oceans. In coastal waters, high dissolved inorganic N concentrations were historically thought to inhibit dinitrogen (N2) fixation, however, recent N2 fixation measurements and the presence of the N2-fixing UCYN-A/haptophyte symbiosis in nearshore waters challenge this paradigm. We characterized the contribution of UCYN-A symbioses to nearshore N2 fixation in the Southern California Current System (SCCS) by measuring bulk community and single-cell N2 fixation rates, as well as diazotroph community composition and abundance. UCYN-A1 and UCYN-A2 symbioses dominated diazotroph communities throughout the region during upwelling and oceanic seasons. Bulk N2 fixation was detected in most surface samples, with rates up to 23.0 ± 3.8 nmol N l-1 d-1, and was often detected at the deep chlorophyll maximum in the presence of nitrate (>1 µM). UCYN-A2 symbiosis N2 fixation rates were higher (151.1 ± 112.7 fmol N cell-1 d-1) than the UCYN-A1 symbiosis (6.6 ± 8.8 fmol N cell-1 d-1). N2 fixation by the UCYN-A1 symbiosis accounted for a majority of the measured bulk rates at two offshore stations, while the UCYN-A2 symbiosis was an important contributor in three nearshore stations. This report of active UCYN-A symbioses and broad mesoscale distribution patterns establishes UCYN-A symbioses as the dominant diazotrophs in the SCCS, where heterocyst-forming and unicellular cyanobacteria are less prevalent, and provides evidence that the two dominant UCYN-A sublineages are separate ecotypes.

    View details for DOI 10.1038/s43705-021-00039-7

    View details for PubMedID 36740625

    View details for PubMedCentralID PMC9723760

  • Response of Lower Sacramento River phytoplankton to high-ammonium wastewater effluent Elementa: Science of the Anthropocene Strong, A. L., Mills, M. M., Huang, I. B., van Dijken, G. L., Driscoll, S. E., Berg, G. M., Kudela, R. M., Monismith, S. G., Francis, C. A., Arrigo, K. R. 2021; 9(1)
  • Massive Southern Ocean phytoplankton bloom fed by iron of possible hydrothermal origin. Nature communications Schine, C. M., Alderkamp, A., van Dijken, G., Gerringa, L. J., Sergi, S., Laan, P., van Haren, H., van de Poll, W. H., Arrigo, K. R. 2021; 12 (1): 1211

    Abstract

    Primary production in the Southern Ocean (SO) is limited by iron availability. Hydrothermal vents have been identified as a potentially important source of iron to SO surface waters. Here we identify a recurring phytoplankton bloom in the high-nutrient, low-chlorophyll waters of the Antarctic Circumpolar Current in the Pacific sector of the SO, that we argue is fed by iron of hydrothermal origin. In January 2014 the bloom covered an area of ~266,000 km2 with depth-integrated chlorophyll a>300mgm-2, primary production rates >1gC m-2 d-1, and a mean CO2 flux of -0.38gC m-2 d-1. The elevated iron supporting this bloom is likely of hydrothermal origin based on the recurrent position of the bloom relative to two active hydrothermal vent fields along the Australian Antarctic Ridge and the association of the elevated iron with a distinct water mass characteristic of a nonbuoyant hydrothermal vent plume.

    View details for DOI 10.1038/s41467-021-21339-5

    View details for PubMedID 33619262

  • Dissolved Trace Metals in the Ross Sea FRONTIERS IN MARINE SCIENCE Gerringa, L. A., Alderkamp, A., van Dijken, G., Laan, P., Middag, R., Arrigo, K. R. 2020; 7
  • Comparison of Cloud-Filling Algorithms for Marine Satellite Data REMOTE SENSING Stock, A., Subramaniam, A., Van Dijken, G. L., Wedding, L. M., Arrigo, K. R., Mills, M. M., Cameron, M. A., Micheli, F. 2020; 12 (20)

    View details for DOI 10.3390/rs12203313

    View details for Web of Science ID 000585680200001

  • Summer High-Wind Events and Phytoplankton Productivity in the Arctic Ocean JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Crawford, A. D., Krumhardt, K. M., Lovenduski, N. S., van Dijken, G. L., Arrigo, K. R. 2020; 125 (9)
  • Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean ELEMENTA-SCIENCE OF THE ANTHROPOCENE Ardyna, M., Mundy, C. J., Mills, M. M., Oziel, L., Grondin, P., Lacour, L., Verin, G., Van Dijken, G., Ras, J., Alou-Font, E., Babin, M., Gosselin, M., Tremblay, J., Raimbault, P., Assmy, P., Nicolaus, M., Claustre, H., Arrigo, K. R. 2020; 8
  • Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): iron biogeochemistry (vol 71, pg 16, 2012) DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Gerringa, L. A., Alderkamp, A., Laan, P., Thuroczy, C., de Baar, H. W., Mills, M. M., van Dijken, G. L., van Haren, H., Arrigo, K. R. 2020; 177
  • Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. The ISME journal Mills, M. M., Turk-Kubo, K. A., van Dijken, G. L., Henke, B. A., Harding, K., Wilson, S. T., Arrigo, K. R., Zehr, J. P. 2020

    Abstract

    The microbial fixation of N2 is the largest source of biologically available nitrogen (N) to the oceans. However, it is the most energetically expensive N-acquisition process and is believed inhibited when less energetically expensive forms, like dissolved inorganic N (DIN), are available. Curiously, the cosmopolitan N2-fixing UCYN-A/haptophyte symbiosis grows in DIN-replete waters, but the sensitivity of their N2 fixation to DIN is unknown. We used stable isotope incubations, catalyzed reporter deposition fluorescence in-situ hybridization (CARD-FISH), and nanoscale secondary ion mass spectrometry (nanoSIMS), to investigate the N source used by the haptophyte host and sensitivity of UCYN-A N2 fixation in DIN-replete waters. We demonstrate that under our experimental conditions, the haptophyte hosts of two UCYN-A sublineages do not assimilate nitrate (NO3-) and meet little of their N demands via ammonium (NH4+) uptake. Instead the UCYN-A/haptophyte symbiosis relies on UCYN-A N2 fixation to supply large portions of the haptophyte's N requirements, even under DIN-replete conditions. Furthermore, UCYN-A N2 fixation rates, and haptophyte host carbon fixation rates, were at times stimulated by NO3- additions in N-limited waters suggesting a link between the activities of the bulk phytoplankton assemblage and the UCYN-A/haptophyte symbiosis. The results suggest N2 fixation may be an evolutionarily viable strategy for diazotroph-eukaryote symbioses, even in N-rich coastal or high latitude waters.

    View details for DOI 10.1038/s41396-020-0691-6

    View details for PubMedID 32523086

  • Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea PROGRESS IN OCEANOGRAPHY Dalpadado, P., Arrigo, K. R., van Dijken, G. L., Skjoldal, H., Bagoien, E., Dolgov, A., Prokopchuk, I. P., Sperfeld, E. 2020; 185
  • Analysis of Iron Sources in Antarctic Continental Shelf Waters JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Dinniman, M. S., St-Laurent, P., Arrigo, K. R., Hofmann, E. E., van Dijken, G. L. 2020; 125 (5)
  • Synergistic interactions among growing stressors increase risk to an Arctic ecosystem. Nature communications Arrigo, K. R., van Dijken, G. L., Cameron, M. A., van der Grient, J., Wedding, L. M., Hazen, L., Leape, J., Leonard, G., Merkl, A., Micheli, F., Mills, M. M., Monismith, S., Ouellette, N. T., Zivian, A., Levi, M., Bailey, R. M. 2020; 11 (1): 6255

    Abstract

    Oceans provide critical ecosystem services, but are subject to a growing number of external pressures, including overfishing, pollution, habitat destruction, and climate change. Current models typically treat stressors on species and ecosystems independently, though in reality, stressors often interact in ways that are not well understood. Here, we use a network interaction model (OSIRIS) to explicitly study stressor interactions in the Chukchi Sea (Arctic Ocean) due to its extensive climate-driven loss of sea ice and accelerated growth of other stressors, including shipping and oil exploration. The model includes numerous trophic levels ranging from phytoplankton to polar bears. We find that climate-related stressors have a larger impact on animal populations than do acute stressors like increased shipping and subsistence harvesting. In particular, organisms with a strong temperature-growth rate relationship show the greatest changes in biomass as interaction strength increased, but also exhibit the greatest variability. Neglecting interactions between stressors vastly underestimates the risk of population crashes. Our results indicate that models must account for stressor interactions to enable responsible management and decision-making.

    View details for DOI 10.1038/s41467-020-19899-z

    View details for PubMedID 33288746

  • Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science (New York, N.Y.) Lewis, K. M., van Dijken, G. L., Arrigo, K. R. 2020; 369 (6500): 198–202

    Abstract

    Historically, sea ice loss in the Arctic Ocean has promoted increased phytoplankton primary production because of the greater open water area and a longer growing season. However, debate remains about whether primary production will continue to rise should sea ice decline further. Using an ocean color algorithm parameterized for the Arctic Ocean, we show that primary production increased by 57% between 1998 and 2018. Surprisingly, whereas increases were due to widespread sea ice loss during the first decade, the subsequent rise in primary production was driven primarily by increased phytoplankton biomass, which was likely sustained by an influx of new nutrients. This suggests a future Arctic Ocean that can support higher trophic-level production and additional carbon export.

    View details for DOI 10.1126/science.aay8380

    View details for PubMedID 32647002

  • Light Is the Primary Driver of Early Season Phytoplankton Production Along the Western Antarctic Peninsula JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Joy-Warren, H. L., van Dijken, G. L., Alderkamp, A., Leventer, A., Lewis, K. M., Selz, V., Lowry, K. E., van de Poll, W., Arrigo, K. R. 2019
  • The organic complexation of iron in the Ross sea MARINE CHEMISTRY Gerringa, L. A., Laan, P., Arrigo, K. R., van Dijken, G. L., Alderkamp, A. 2019; 215
  • Effects of iron and light availability on phytoplankton photosynthetic properties in the Ross Sea MARINE ECOLOGY PROGRESS SERIES Alderkamp, A., van Dijken, G. L., Lowry, K. E., Lewis, K. M., Joy-Warren, H. L., van de Poll, W., Laan, P., Gerringa, L., Delmont, T. O., Jenkins, B. D., Arrigo, K. R. 2019; 621: 33–50

    View details for DOI 10.3354/meps13000

    View details for Web of Science ID 000485734200003

  • Publisher Correction: Ecological control of nitrite in the upper ocean. Nature communications Zakem, E. J., Al-Haj, A. n., Church, M. J., van Dijken, G. L., Dutkiewicz, S. n., Foster, S. Q., Fulweiler, R. W., Mills, M. M., Follows, M. J. 2019; 10 (1): 4618

    Abstract

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

    View details for DOI 10.1038/s41467-019-12252-z

    View details for PubMedID 31601794

  • Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation LIMNOLOGY AND OCEANOGRAPHY Lewis, K. M., Arntsen, A. E., Coupel, P., Joy-Warren, H., Lowry, K. E., Matsuoka, A., Mills, M. M., van Dijken, G. L., Selz, Arrigo, K. R. 2019; 64 (1): 284–301

    View details for DOI 10.1002/lno.11039

    View details for Web of Science ID 000456720900020

  • Nitrogen Limitation of the Summer Phytoplankton and Heterotrophic Prokaryote Communities in the Chukchi Sea FRONTIERS IN MARINE SCIENCE Mills, M. M., Brown, Z. W., Laney, S. R., Ortega-Retuerta, E., Lowry, K. E., van Dijken, G. L., Arrigo, K. R. 2018; 5
  • Drivers of Ice Algal Bloom Variability Between 1980 and 2015 in the Chukchi Sea JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Selz, V., Saenz, B. T., van Dijken, G. L., Arrigo, K. R. 2018; 123 (10): 7037–52
  • Ice algal communities in the Chukchi and Beaufort Seas in spring and early summer: Composition, distribution, and coupling with phytoplankton assemblages LIMNOLOGY AND OCEANOGRAPHY Selz, V., Laney, S., Arnsten, A. E., Lewis, K. M., Lowry, K. E., Joy-Warren, H. L., Mills, M. M., van Dijken, G. L., Arrigo, K. R. 2018; 63 (3): 1109–33

    View details for DOI 10.1002/lno.10757

    View details for Web of Science ID 000432019600005

  • Exploring the Potential Impact of Greenland Meltwater on Stratification, Photosynthetically Active Radiation, and Primary Production in the Labrador Sea JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Oliver, H., Luo, H., Castelao, R. M., van Dijken, G. L., Mattingly, K. S., Rosen, J. J., Mote, T. L., Arrigo, K. R., Rennermalm, A. K., Tedesco, M., Yager, P. L. 2018; 123 (4): 2570–91
  • Ecological control of nitrite in the upper ocean NATURE COMMUNICATIONS Zakem, E. J., Al-Haj, A., Church, M. J., van Dijken, G. L., Dutkiewicz, S., Foster, S. Q., Fulweiler, R. W., Mills, M. M., Follows, M. J. 2018; 9: 1206

    Abstract

    Microorganisms oxidize organic nitrogen to nitrate in a series of steps. Nitrite, an intermediate product, accumulates at the base of the sunlit layer in the subtropical ocean, forming a primary nitrite maximum, but can accumulate throughout the sunlit layer at higher latitudes. We model nitrifying chemoautotrophs in a marine ecosystem and demonstrate that microbial community interactions can explain the nitrite distributions. Our theoretical framework proposes that nitrite can accumulate to a higher concentration than ammonium because of differences in underlying redox chemistry and cell size between ammonia- and nitrite-oxidizing chemoautotrophs. Using ocean circulation models, we demonstrate that nitrifying microorganisms are excluded in the sunlit layer when phytoplankton are nitrogen-limited, but thrive at depth when phytoplankton become light-limited, resulting in nitrite accumulation there. However, nitrifying microorganisms may coexist in the sunlit layer when phytoplankton are iron- or light-limited (often in higher latitudes). These results improve understanding of the controls on nitrification, and provide a framework for representing chemoautotrophs and their biogeochemical effects in ocean models.

    View details for PubMedID 29572474

  • Under-Ice Phytoplankton Blooms Inhibited by Spring Convective Mixing in Refreezing Leads JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Lowry, K. E., Pickart, R. S., Selz, V., Mills, M. M., Pacini, A., Lewis, K. M., Joy-Warren, H. L., Nobre, C., van Dijken, G. L., Grondin, P., Ferland, J., Arrigo, K. R. 2018; 123 (1): 90–109
  • Early Spring Phytoplankton Dynamics in the Western Antarctic Peninsula JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., van Dijken, G. L., Alderkamp, A., Erickson, Z. K., Lewis, K. M., Lowry, K. E., Joy-Warren, H. L., Middag, R., Nash-Arrigo, J. E., Selz, V., van de Poll, W. 2017; 122 (12): 9350–69
  • Differential effects of nitrate, ammonium, and urea as N sources for microbial communities in the North Pacific Ocean LIMNOLOGY AND OCEANOGRAPHY Shilova, I. N., Mills, M. M., Robidart, J. C., Turk-Kubo, K. A., Bjorkman, K. M., Kolber, Z., Rapp, I., van Dijken, G. L., Church, M. J., Arrigo, K. R., Achterberg, E. P., Zehr, J. P. 2017; 62 (6): 2550–74

    View details for DOI 10.1002/lno.10590

    View details for Web of Science ID 000415930800015

  • Late Spring Nitrate Distributions Beneath the Ice-Covered Northeastern Chukchi Shelf JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES Arrigo, K. R., Mills, M. M., van Dijken, G. L., Lowry, K. E., Pickart, R. S., Schlitzer, R. 2017; 122 (9): 2409–17
  • Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G. L., Castelao, R. M., Luo, H., Rennermalm, A. K., Tedesco, M., Mote, T. L., Oliver, H., Yager, P. L. 2017; 44 (12): 6278–85
  • Regional chlorophyll a algorithms in the Arctic Ocean and their effect on satellite-derived primary production estimates DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Lewis, K. M., Mitchell, B. G., van Dijken, G. L., Arrigo, K. R. 2016; 130: 14-27
  • Mass balance estimates of carbon export in different water masses of the Chukchi Sea shelf DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Strong, A. L., Lowry, K. E., Brown, Z. W., Mills, M. M., Van Dijken, G. L., Pickart, R. S., Cooper, L. W., Frey, K. E., Benner, R., Fichot, C. G., Mathis, J. T., Bates, N. R., Arrigo, K. R. 2016; 130: 88-99
  • Spatial analysis of trends in primary production and relationship with large-scale climate variability in the Ross Sea, Antarctica (1997-2013) JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Schine, C. M., van Dijken, G., Arrigo, K. R. 2016; 121 (1): 368-386
  • Sources of iron in the Ross Sea Polynya in early summer MARINE CHEMISTRY Gerringa, L. J., Laan, P., van Dijken, G. L., Van Haren, H., de Baar, H. J., Arrigo, K. R., Alderkamp, A. 2015; 177: 447-459
  • Iron supply and demand in an Antarctic shelf ecosystem GEOPHYSICAL RESEARCH LETTERS McGillicuddy, D. J., Sedwick, P. N., Dinniman, M. S., Arrigo, K. R., Bibby, T. S., Greenan, B. J., Hofmann, E. E., Klinck, J. M., Smith, W. O., MACK, S. L., Marsay, C. M., Sohst, B. M., van Dijken, G. L. 2015; 42 (19): 8088-8097
  • Continued increases in Arctic Ocean primary production PROGRESS IN OCEANOGRAPHY Arrigo, K. R., Van Dijken, G. L. 2015; 136: 60-70
  • The influence of winter water on phytoplankton blooms in the Chukchi Sea DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Lowry, K. E., Pickart, R. S., Mills, M. M., Brown, Z. W., Van Dijken, G. L., Bates, N. R., Arrigo, K. R. 2015; 118: 53-72
  • Characterizing the subsurface chlorophyll a maximum in the Chukchi Sea and Canada Basin DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Brown, Z. W., Lowry, K. E., Palmer, M. A., Van Dijken, G. L., Mills, M. M., Pickart, R. S., Arrigo, K. R. 2015; 118: 88-104
  • Impacts of low phytoplankton NO3- :PO43- utilization ratios over the Chukchi Shelf, Arctic Ocean DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Mills, M. M., Brown, Z. W., Lowry, K. E., Van Dijken, G. L., Becker, S., Pal, S., Benitez-Nelson, C. R., Downer, M. M., Strong, A. L., Swift, J. H., Pickart, R. S., Arrigo, K. R. 2015; 118: 105-121
  • Environmental controls of marine productivity hot spots around Antarctica JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Van Dijken, G. L., Strong, A. L. 2015; 120 (8): 5545-5565
  • Phytoplankton blooms beneath the sea ice in the Chukchi sea DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bates, N. R., Benitez-Nelson, C. R., Brownlee, E., Frey, K. E., Laney, S. R., Mathis, J., Matsuoka, A., Mitchell, B. G., Moore, G. W., Reynolds, R. A., Sosik, H. M., Swift, J. H. 2014; 105: 1-16
  • Evidence of under-ice phytoplankton blooms in the Chukchi Sea from 1998 to 2012 DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Lowry, K. E., Van Dijken, G. L., Arrigo, K. R. 2014; 105: 105-117
  • Response of marine bacterioplankton to a massive under-ice phytoplankton bloom in the Chukchi Sea (Western Arctic Ocean) DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Ortega-Retuerta, E., Fichot, C. G., Arrigo, K. R., van Dijken, G. L., Joux, E. 2014; 105: 74-84
  • Productivity in the Barents Sea - Response to Recent Climate Variability PLOS ONE Dalpadado, P., Arrigo, K. R., Hjollo, S. S., Rey, F., Ingvaldsen, R. B., Sperfeld, E., Van Dijken, G. L., Stige, L. C., Olsen, A., Ottersen, G. 2014; 9 (5)

    View details for DOI 10.1371/journal.pone.0095273

    View details for Web of Science ID 000335510600031

    View details for PubMedID 24788513

  • Productivity in the barents sea--response to recent climate variability. PloS one Dalpadado, P., Arrigo, K. R., Hjøllo, S. S., Rey, F., Ingvaldsen, R. B., Sperfeld, E., Van Dijken, G. L., Stige, L. C., Olsen, A., Ottersen, G. 2014; 9 (5)

    Abstract

    The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region.

    View details for DOI 10.1371/journal.pone.0095273

    View details for PubMedID 24788513

    View details for PubMedCentralID PMC4006807

  • Light and nutrient control of photosynthesis in natural phytoplankton populations from the Chukchi and Beaufort seas, Arctic Ocean LIMNOLOGY AND OCEANOGRAPHY Palmer, M. A., Van Dijken, G. L., Mitchell, B. G., Seegers, B. J., Lowry, K. E., Mills, M. M., Arrigo, K. R. 2013; 58 (6): 2185-2205
  • Long-term trends of upwelling and impacts on primary productivity in the Alaskan Beaufort Sea DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS Pickart, R. S., Schulze, L. M., Moore, G. W., Charette, M. A., Arrigo, K. R., van Dijken, G., Danielson, S. L. 2013; 79: 106-121
  • Insignificant buffering capacity of Antarctic shelf carbonates GLOBAL BIOGEOCHEMICAL CYCLES Hauck, J., Arrigo, K. R., Hoppema, M., van Dijken, G. L., Voelker, C., Wolf-Gladrow, D. A. 2013; 27 (1): 11-20
  • Photoacclimation and non-photochemical quenching under in situ irradiance in natural phytoplankton assemblages from the Amundsen Sea, Antarctica MARINE ECOLOGY PROGRESS SERIES Alderkamp, A., Mills, M. M., Van Dijken, G. L., Arrigo, K. R. 2013; 475: 15-?

    View details for DOI 10.3354/meps10097

    View details for Web of Science ID 000314935000002

  • Patterns and controlling factors of species diversity in the Arctic Ocean JOURNAL OF BIOGEOGRAPHY Yasuhara, M., Hunt, G., van Dijken, G., Arrigo, K. R., Cronin, T. M., Wollenburg, J. E. 2012; 39 (11): 2081-2088
  • Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Alderkamp, A., Mills, M. M., Van Dijken, G. L., Laan, P., Thuroczy, C., Gerringa, L. J., de Baar, H. J., Payne, C. D., Visser, R. J., Buma, A. G., Arrigo, K. R. 2012; 71-76: 32-48
  • Phytoplankton biomass and pigment responses to Fe amendments in the Pine Island and Amundsen polynyas DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Mills, M. M., Alderkamp, A., Thuroczy, C., Van Dijken, G. L., Laan, P., de Baar, H. J., Arrigo, K. R. 2012; 71-76: 61-76
  • Key role of organic complexation of iron in sustaining phytoplankton blooms in the Pine Island and Amundsen Polynyas (Southern Ocean) DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Thuroczy, C., Alderkamp, A., Laan, P., Gerringa, L. J., Mills, M. M., Van Dijken, G. L., de Baar, H. J., Arrigo, K. R. 2012; 71-76: 49-60
  • Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Arrigo, K. R., Lowry, K. E., Van Dijken, G. L. 2012; 71-76: 5-15
  • Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Gerringa, L. J., Alderkamp, A., Laan, P., Thuroczy, C., de Baar, H. J., Mills, M. M., Van Dijken, G. L., van Haren, H., Arrigo, K. R. 2012; 71-76: 16-31
  • ASPIRE The Amundsen Sea Polynya International Research Expedition OCEANOGRAPHY Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., Alderkamp, A., Schofield, O., Abrahamsen, E. P., Arrigo, K. R., Bertilsson, S., Garay, D. L., Guerrero, R., Lowry, K. E., Moksnes, P., Ndungu, K., Post, A. F., Randall-Goodwin, E., Riemann, L., Severmann, S., Thatje, S., Van Dijken, G. L., Wilson, S. 2012; 25 (3): 40-53
  • Massive Phytoplankton Blooms Under Arctic Sea Ice SCIENCE Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F., Bates, N. R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K., Frey, K. E., Garley, R., Laney, S. R., Lubelczyk, L., Mathis, J., Matsuoka, A., Mitchell, B. G., Moore, G. W., Ortega-Retuerta, E., Pal, S., Polashenski, C. M., Reynolds, R. A., Schieber, B., Sosik, H. M., Stephens, M., Swift, J. H. 2012; 336 (6087): 1408-1408

    Abstract

    Phytoplankton blooms over Arctic Ocean continental shelves are thought to be restricted to waters free of sea ice. Here, we document a massive phytoplankton bloom beneath fully consolidated pack ice far from the ice edge in the Chukchi Sea, where light transmission has increased in recent decades because of thinning ice cover and proliferation of melt ponds. The bloom was characterized by high diatom biomass and rates of growth and primary production. Evidence suggests that under-ice phytoplankton blooms may be more widespread over nutrient-rich Arctic continental shelves and that satellite-based estimates of annual primary production in these waters may be underestimated by up to 10-fold.

    View details for DOI 10.1126/science.1215065

    View details for Web of Science ID 000305211700035

    View details for PubMedID 22678359

  • Mapping phytoplankton iron utilization: Insights into Southern Ocean supply mechanisms JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Boyd, P. W., Arrigo, K. R., Strzepek, R., van Dijken, G. L. 2012; 117
  • THE EFFECT OF IRON LIMITATION ON THE PHOTOPHYSIOLOGY OF PHAEOCYSTIS ANTARCTICA (PRYMNESIOPHYCEAE) AND FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) UNDER DYNAMIC IRRADIANCE JOURNAL OF PHYCOLOGY Alderkamp, A., Kulk, G., Buma, A. G., Visser, R. J., Van Dijken, G. L., Mills, M. M., Arrigo, K. R. 2012; 48 (1): 45-59
  • THE EFFECT OF IRON LIMITATION ON THE PHOTOPHYSIOLOGY OF PHAEOCYSTIS ANTARCTICA (PRYMNESIOPHYCEAE) AND FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) UNDER DYNAMIC IRRADIANCE(1). Journal of phycology Alderkamp, A. C., Kulk, G., Buma, A. G., Visser, R. J., Van Dijken, G. L., Mills, M. M., Arrigo, K. R. 2012; 48 (1): 45-59

    Abstract

    The effects of iron limitation on photoacclimation to dynamic irradiance were studied in Phaeocystis antarctica G. Karst. and Fragilariopsis cylindrus (Grunow) W. Krieg. in terms of growth rate, photosynthetic parameters, pigment composition, and fluorescence characteristics. Under dynamic light conditions mimicking vertical mixing below the euphotic zone, P. antarctica displayed higher growth rates than F. cylindrus both under iron (Fe)-replete and Fe-limiting conditions. Both species showed xanthophyll de-epoxidation that was accompanied by low levels of nonphotochemical quenching (NPQ) during the irradiance maximum of the light cycle. The potential for NPQ at light levels corresponding to full sunlight was substantial in both species and increased under Fe limitation in F. cylindrus. Although the decline in Fv /Fm under Fe limitation was similar in both species, the accompanying decrease in the maximum rate of photosynthesis and growth rate was much stronger in F. cylindrus. Analysis of the electron transport rates through PSII and on to carbon (C) fixation revealed a large potential for photoprotective cyclic electron transport (CET) in F. cylindrus, particularly under Fe limitation. Probably, CET aided the photoprotection in F. cylindrus, but it also reduced photosynthetic efficiency at higher light intensities. P. antarctica, on the other hand, was able to efficiently use electrons flowing through PSII for C fixation at all light levels, particularly under Fe limitation. Thus, Fe limitation enhanced the photophysiological differences between P. antarctica and diatoms, supporting field observations where P. antarctica is found to dominate deeply mixed water columns, whereas diatoms dominate shallower mixed layers.

    View details for DOI 10.1111/j.1529-8817.2011.01098.x

    View details for PubMedID 27009649

  • Primary productivity in the Arctic Ocean: Impacts of complex optical properties and subsurface chlorophyll maxima on large-scale estimates JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Matrai, P. A., Van Dijken, G. L. 2011; 116
  • Secular trends in Arctic Ocean net primary production JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Van Dijken, G. L. 2011; 116
  • A reassessment of primary production and environmental change in the Bering Sea JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Brown, Z. W., Van Dijken, G. L., Arrigo, K. R. 2011; 116
  • Responses of psbA, hli and ptox genes to changes in irradiance in marine Synechococcus and Prochlorococcus AQUATIC MICROBIAL ECOLOGY Berg, G. M., Shrager, J., van Dijken, G., Mills, M. M., Arrigo, K. R., Grossman, A. R. 2011; 65 (1): 1-14

    View details for DOI 10.3354/ame01528

    View details for Web of Science ID 000297117200001

  • Influence of atmospheric nutrients on primary productivity in a coastal upwelling region GLOBAL BIOGEOCHEMICAL CYCLES Mackey, K. R., Van Dijken, G. L., Mazloom, S., Erhardt, A. M., Ryan, J., Arrigo, K. R., Paytan, A. 2010; 24
  • PHOTOPHYSIOLOGY IN TWO SOUTHERN OCEAN PHYTOPLANKTON TAXA: PHOTOSYNTHESIS OF PHAEOCYSTIS ANTARCTICA (PRYMNESIOPHYCEAE) AND FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) UNDER SIMULATED MIXED-LAYER IRRADIANCE JOURNAL OF PHYCOLOGY Mills, M. M., Kropuenske, L. R., Van Dijken, G. L., Alderkamp, A., Berg, G. M., Robinson, D. H., Welschmeyer, N. A., Arrigo, K. R. 2010; 46 (6): 1114-1127
  • STRATEGIES AND RATES OF PHOTOACCLIMATION IN TWO MAJOR SOUTHERN OCEAN PHYTOPLANKTON TAXA: PHAEOCYSTIS ANTARCTICA (HAPTOPHYTA) AND FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) JOURNAL OF PHYCOLOGY Kropuenske, L. R., Mills, M. M., Van Dijken, G. L., Alderkamp, A., Berg, G. M., Robinson, D. H., Welschmeyer, N. A., Arrigo, K. R. 2010; 46 (6): 1138-1151
  • Photophysiology in Two Major Southern Ocean Phytoplankton Taxa: Photosynthesis and Growth of Phaeocystis antarctica and Fragilariopsis cylindrus under Different Irradiance Levels Annual Meeting of the Society-for-Integrative-and-Comparative-Biology Arrigo, K. R., Mills, M. M., Kropuenske, L. R., Van Dijken, G. L., Alderkamp, A., Robinson, D. H. OXFORD UNIV PRESS INC. 2010: 950–66

    Abstract

    The Ross Sea, Antarctica, supports two distinct populations of phytoplankton, one that grows well in sea ice and blooms in the shallow mixed layers of the Western marginal ice zone and the other that can be found in sea ice but thrives in the deeply mixed layers of the Ross Sea. Dominated by diatoms (e.g. Fragilariopsis cylindrus) and the prymnesiophyte Phaeocystis antarctica, respectively, the processes leading to the development of these different phytoplankton assemblages are not well known. The goal of this article was to gain a better understanding of the photophysiological characteristics that allow each taxon to dominate its specific habitat. Cultures of F. cylindrus and P. antarctica were each grown semi-continuously at four different constant irradiances (5, 25, 65, and 125 µmol quanta/m2/s). Fragilariopsis cylindrus produced far less photosynthetic pigment per cell than did P. antarctica but much more photoprotective pigment. Fragilariopsis cylindrus also exhibited substantially lower rates of photosynthesis and growth but also was far less susceptible to photoinhibition of cell growth. Excess photosynthetic capacity, a measure of the ability of phytoplankton to exploit variable light environments, was significantly higher in both strains of P. antarctica than in F. cylindrus. The combination of these characteristics suggests that F. cylindrus has a competitive advantage under conditions where mixed layers are shallow and light levels are relatively constant and high. In contrast, P. antarctica should dominate waters where mixed layers are deep and light levels are variable. These results are consistent with distributions of phytoplankton in the Ross Sea and suggest that light is the primary factor determining composition of phytoplankton communities.

    View details for DOI 10.1093/icb/icq021

    View details for Web of Science ID 000284430400005

    View details for PubMedID 21558252

  • Air-sea flux of CO2 in the Arctic Ocean, 1998-2003 JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES Arrigo, K. R., Pabi, S., Van Dijken, G. L., Maslowski, W. 2010; 115
  • Contrasting spring and summer phytoplankton dynamics in the nearshore Southern California Bight LIMNOLOGY AND OCEANOGRAPHY Santoro, A. E., Nidzieko, N. J., Van Dijken, G. L., Arrigo, K. R., Boehm, A. B. 2010; 55 (1): 264-278
  • Photophysiology in two major Southern Ocean phytoplankton taxa: Photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus LIMNOLOGY AND OCEANOGRAPHY Kropuenske, L. R., Mills, M. M., Van Dijken, G. L., Bailey, S., Robinson, D. H., Welschmeyer, N. A., Arrigo, K. R. 2009; 54 (4): 1176-1196
  • Coastal Southern Ocean: A strong anthropogenic CO2 sink GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G., Long, M. 2008; 35 (21)
  • Impact of a shrinking Arctic ice cover on marine primary production GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G., Pabi, S. 2008; 35 (19)
  • Primary production in the Southern Ocean, 1997-2006 JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Van Dijken, G. L., Bushinsky, S. 2008; 113 (C8)
  • Primary production in the Arctic Ocean, 1998-2006 JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Pabi, S., Van Dijken, G. L., Arrigo, K. R. 2008; 113 (C8)
  • Alternative photosynthetic electron flow to oxygen in marine Synechococcus BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS Bailey, S., Melis, A., Mackey, K. R., Cardol, P., Finazzi, G., van Dijken, G., Berg, G. M., Arrigo, K., Shrager, J., Grossman, A. 2008; 1777 (3): 269-276

    Abstract

    Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.

    View details for DOI 10.1016/j.bbabio.2008.01.002

    View details for Web of Science ID 000254674600004

    View details for PubMedID 18241667

  • Interannual variation in air-sea CO2 flux in the Ross Sea, Antarctica: A model analysis JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Van Dijken, G. L. 2007; 112 (C3)
  • Increased exposure of Southern Ocean phytoplankton to ultraviolet radiation GEOPHYSICAL RESEARCH LETTERS Lubin, D., Arrigo, K. R., van Dijken, G. L. 2004; 31 (9)
  • Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G. L. 2004; 31 (8)
  • Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Arrigo, K. R., van Dijken, G. L. 2004; 51 (1-3): 117-138
  • Phytoplankton dynamics within 37 Antarctic coastal polynya systems JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., van Dijken, G. L. 2003; 108 (C8)
  • Impact of iceberg C-19 on Ross Sea primary production GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G. L. 2003; 30 (16)
  • Impact of a deep ozone hole on Southern Ocean primary production JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Lubin, D., van Dijken, G. L., Holm-Hansen, O., Morrow, E. 2003; 108 (C5)
  • A comparison between excess barium and barite as indicators of carbon export PALEOCEANOGRAPHY Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., MURRAY, R. W. 2003; 18 (1)
  • Ecological impact of a large Antarctic iceberg GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G. L., Ainley, D. G., Fahnestock, M. A., Markus, T. 2002; 29 (7)