All Publications

  • Complex scaffold remodeling in plant triterpene biosynthesis. Science (New York, N.Y.) De La Pena, R., Hodgson, H., Liu, J. C., Stephenson, M. J., Martin, A. C., Owen, C., Harkess, A., Leebens-Mack, J., Jimenez, L. E., Osbourn, A., Sattely, E. S. 2023; 379 (6630): 361-368


    Triterpenes with complex scaffold modifications are widespread in the plant kingdom. Limonoids are an exemplary family that are responsible for the bitter taste in citrus (e.g., limonin) and the active constituents of neem oil, a widely used bioinsecticide (e.g., azadirachtin). Despite the commercial value of limonoids, a complete biosynthetic route has not been described. We report the discovery of 22 enzymes, including a pair of neofunctionalized sterol isomerases, that catalyze 12 distinct reactions in the total biosynthesis of kihadalactone A and azadirone, products that bear the signature limonoid furan. These results enable access to valuable limonoids and provide a template for discovery and reconstitution of triterpene biosynthetic pathways in plants that require multiple skeletal rearrangements and oxidations.

    View details for DOI 10.1126/science.adf1017

    View details for PubMedID 36701471