Stanford Advisors


All Publications


  • Cycloastragenol prevents bone loss via inhibiting osteoclast activity in glucocorticoid-induced osteonecrosis of the femoral head: Anin vivostudy. Journal of orthopaedic translation Wang, G., Ma, C., Mo, L., Chen, J., Yuan, J., Xu, J., He, W. 2024; 45: 178-187

    Abstract

    Background: Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common bone and joint disease. There is currently a lack of effective treatment for GIONFH, and the disease progression may lead to total hip arthroplasty (THA). The exact mechanism of GIONFH pathogenesis remains unsettled, and emerging evidence indicates that the overactivation of osteoclasts plays a pivotal role in the occurrence and progression of this condition. Our previous study has shown that cycloastragenol (CAG), a triterpenoid saponin with multiple bioactivities, is a natural osteoclast inhibitor and has a protective effect on bone loss. However, its effect on GIONFH remains unclear.Methods: In this study, methylprednisolone (MPS) (20mg/kg) was administered via gluteal muscle injection to female Sprague-Dawley (SD) rats to induce GIONFH, and different doses of CAG (5 and 15mg/kg) were dispensed intraperitoneally for intervention. Micro-CT screening and angiography were applied to determine the shaping of necrotic lesions, the loss of trabecular bone, and the change in the local blood supply. The molecular mechanism was established by Real-time qPCR and Western blotting. Hematoxylin and eosin (H&E) staining was performed to identify empty lacunae in the femoral head.Results: CAG treatment shanked the necrotic lesion area, inhibited the trabecular bone loss, and improved the local blood supply in the femoral head. In addition, CAG medication lowered the ratio of Tnfsf11 (encoding RANKL) to Tnfrsf11b (encoding OPG) and the expression of osteoclast-specific genes, including Acp5 and Ctsk. Consistently, CAG treatment exhibited a dose-dependent weakening effect on the expression of osteoclastogenesis and bone resorption-related proteins, including TRAP, CTSK, and MMP9. CAG addition also alleviated the occurrence of empty lacunae in the subchondral region.Conclusion: Our discoveries demonstrate that CAG is a potential option for hip preservation therapy in GIONFH patients.Translational potential of this article: The protective effect of CAG on rats with GIONFH can be translated into clinical use.

    View details for DOI 10.1016/j.jot.2024.01.009

    View details for PubMedID 38549807

  • Tanshinone I attenuates estrogen-deficiency bone loss via inhibiting RANKL-induced MAPK and NF-κB signaling pathways INTERNATIONAL IMMUNOPHARMACOLOGY Ma, C., Wang, Z., Mo, L., Wang, X., Zhou, G., Yi, C., Niu, W., Liu, Y. 2024; 127: 111322

    Abstract

    This study aims to reveal the role of Tanshinone I (TI) in inhibiting osteoclast activity and bone loss in vitro and in vivo, as well as elucidate its underlying molecular mechanism.A mouse model of estrogen deficiency was used to assess the inhibitory effect of TI on osteoclast activity and subsequent bone loss. To validate the impact of TI on osteoclast formation, TRAcP staining and pseudopodia belt staining were conducted. The expressions of osteoclast-specific genes and proteins were evaluated using RT-PCR and Western Blot analyses. Additionally, immunofluorescence staining was employed to examine the effect of TI on p65 nuclear translocation and the expression level of reactive oxygen species (ROS).TI demonstrated significant efficacy in alleviating bone mass loss and suppressing osteoclast activity and function in ovariectomized mice. This outcome was predominantly ascribed to a decrease in ROS levels, thereby impeding the NF-κB signaling pathway and the translocation of p65 to the nucleus. Additionally, TI hindered the RANKL-induced phosphorylation of the MAPK signaling pathway. Moreover, TI played a role in the reduction of osteoclast-specific genes and proteins.To summarize, this study sheds light on TI's capacity to modulate various signaling pathways triggered by RANKL, effectively impeding osteoclast formation and mitigating bone loss resulting from estrogen deficiency. Consequently, TI emerges as a promising therapeutic option for estrogen-deficiency bone loss.

    View details for DOI 10.1016/j.intimp.2023.111322

    View details for Web of Science ID 001135551000001

    View details for PubMedID 38064814

  • Combination of Distinct Vascular Stem/Progenitor Cells for Neovascularization and Ischemic Rescue. Arteriosclerosis, thrombosis, and vascular biology Zhao, L., Lee, A. S., Sasagawa, K., Sokol, J., Wang, Y., Ransom, R. C., Zhao, X., Ma, C., Steininger, H. M., Koepke, L. S., Borrelli, M. R., Brewer, R. E., Lee, L. L., Huang, X., Ambrosi, T. H., Sinha, R., Hoover, M. Y., Seita, J., Weissman, I. L., Wu, J. C., Wan, D. C., Xiao, J., Longaker, M. T., Nguyen, P. K., Chan, C. K. 2023

    Abstract

    Peripheral vascular disease remains a leading cause of vascular morbidity and mortality worldwide despite advances in medical and surgical therapy. Besides traditional approaches, which can only restore blood flow to native arteries, an alternative approach is to enhance the growth of new vessels, thereby facilitating the physiological response to ischemia.The ActinCreER/R26VT2/GK3 Rainbow reporter mouse was used for unbiased in vivo survey of injury-responsive vasculogenic clonal formation. Prospective isolation and transplantation were used to determine vessel-forming capacity of different populations. Single-cell RNA-sequencing was used to characterize distinct vessel-forming populations and their interactions.Two populations of distinct vascular stem/progenitor cells (VSPCs) were identified from adipose-derived mesenchymal stromal cells: VSPC1 is CD45-Ter119-Tie2+PDGFRa-CD31+CD105highSca1low, which gives rise to stunted vessels (incomplete tubular structures) in a transplant setting, and VSPC2 which is CD45-Ter119-Tie2+PDGFRa+CD31-CD105lowSca1high and forms stunted vessels and fat. Interestingly, cotransplantation of VSPC1 and VSPC2 is required to form functional vessels that improve perfusion in the mouse hindlimb ischemia model. Similarly, VSPC1 and VSPC2 populations isolated from human adipose tissue could rescue the ischemic condition in mice.These findings suggest that autologous cotransplantation of synergistic VSPCs from nonessential adipose tissue can promote neovascularization and represents a promising treatment for ischemic disease.

    View details for DOI 10.1161/ATVBAHA.122.317943

    View details for PubMedID 37051932