
Jenna Forsyth
Academic Program Professional, Medicine - Med/Infectious Diseases
Bio
Jenna is a postdoctoral fellow with the Woods Institute for the Environment. She completed her PhD with the Emmett Interdisciplinary Program in Environment and Resources and obtained her Master's in Civil and Environmental Engineering from the University of Washington. Her research brings together principles of environmental science, epidemiology, and behavior change. She hopes to develop and evaluate interventions to minimize exposures to contaminants and disease vectors in low-income countries. Her most recent research on lead contamination in food has brought her to Bangladesh.
All Publications
-
Turmeric means "yellow" in Bengali: Lead chromate pigments added to turmeric threaten public health across Bangladesh.
Environmental research
2019; 179 (Pt A): 108722
Abstract
Adulteration is a growing food safety concern worldwide. Previous studies have implicated turmeric as a source of lead (Pb) exposure due to the addition of lead chromate (PbCrO4), a yellow pigment used to enhance brightness. We aimed to assess the practice of adding yellow pigments to turmeric and producer- consumer- and regulatory-factors affecting this practice across the supply chain in Bangladesh. We identified and visited the nine major turmeric-producing districts of Bangladesh as well as two districts with minimal turmeric production. In each district, we conducted semi-structured interviews and informal observations with individuals involved in the production, consumption, and regulation of turmeric. We explored perceptions of and preferences for turmeric quality. We collected samples of yellow pigments and turmeric from the most-frequented wholesale and retail markets. We collected samples of turmeric, pigments, dust, and soil from turmeric polishing mills to assess evidence of adulteration. Interviews were analyzed through an inductive, thematic coding process, with attention focused on perceptions of and preferences for turmeric quality. Samples were analyzed for Pb and chromium (Cr) concentrations via inductively coupled plasma mass spectrometry and x-ray fluorescence. In total, we interviewed 152 individuals from across the supply chain and collected 524 samples of turmeric, pigments, dust, and soil (Table S3, Table S4). Turmeric Pb and Cr concentrations were highest in Dhaka and Munshiganj districts, with maximum turmeric powder Pb concentrations of 1152 μg/g, compared to 690 μg/g in the 9 major turmeric-producing districts. We found evidence of PbCrO4-based yellow pigment adulteration in 7 of the 9 major turmeric-producing districts. Soil samples from polishing mills contained a maximum of 4257 μg/g Pb and yellow pigments contained 2-10% Pb by weight with an average Pb:Cr molar ratio of 1.3. Turmeric wholesalers reported that the practice of adding yellow pigments to dried turmeric root during polishing began more than 30 years ago and continues today, primarily driven by consumer preferences for colorful yellow curries. Farmers stated that merchants are able to sell otherwise poor-quality roots and increase their profits by asking polishers to adulterate with yellow pigments. Adulterating turmeric with lead chromate poses significant risks to human health and development. The results from this study indicate that PbCrO4 is being added to turmeric by polishers, who are unaware of its neurotoxic effects, in order to satisfy wholesalers who are driven by consumer demand for yellow roots. We recommend immediate intervention that engages turmeric producers and consumers to address this public health crisis and ensure a future with Pb-free turmeric.
View details for DOI 10.1016/j.envres.2019.108722
View details for PubMedID 31550596
-
Prevalence of elevated blood lead levels among pregnant women and sources of lead exposure in rural Bangladesh: A case control study.
Environmental research
2018; 166: 1–9
Abstract
Prenatal and early childhood lead exposures impair cognitive development. We aimed to evaluate the prevalence of elevated blood lead levels (BLLs) among pregnant women in rural Bangladesh and to identify sources of lead exposure. We analyzed the BLLs of 430 pregnant women randomly selected from rural communities in central Bangladesh. Fifty-seven cases were selected with the highest BLLs, ≥ 7 mug/dL, and 59 controls were selected with the lowest BLLs, < 2 mug/dL. An exposure questionnaire was administered and soil, rice, turmeric, water, traditional medicine, agrochemical, and can samples were analyzed for lead contamination. Of all 430 women, 132 (31%) had BLLs > 5 mug/dL. Most women with elevated BLLs were spatially clustered. Cases were 2.6 times more likely than controls to consume food from a can (95% CI 1.0-6.3, p = 0.04); 3.6 times more likely to use Basudin, a specific brand of pesticide (95% CI 1.6-7.9, p = 0.002); 3.6 times more likely to use Rifit, a specific brand of herbicide (95% CI 1.7-7.9, p = 0.001); 2.9 times more likely to report using any herbicides (95% CI 1.2-7.3, p = 0.02); and 3.3 times more likely to grind rice (95% CI 1.3-8.4, p = 0.01). Five out of 28 food storage cans were lead-soldered. However, there was minimal physical evidence of lead contamination from 382 agrochemical samples and 129 ground and unground rice samples. Among 17 turmeric samples, one contained excessive lead (265 mug/g) and chromium (49 mug/g). Overall, we found evidence of elevated BLLs and multiple possible sources of lead exposure in rural Bangladesh. Further research should explicate and develop interventions to interrupt these pathways.
View details for PubMedID 29804028
-
LARVAL SOURCE REDUCTION WITH A PURPOSE: DESIGNING AND EVALUATING A SCHOOL AND COMMUNITY INTERVENTION IN COASTAL KENYA
AMER SOC TROP MED & HYGIENE. 2018: 440
View details for Web of Science ID 000461386604097
-
UNDERSTANDING THE COMMUNITY CONTEXT OF AEDES AEGYPTI MOSQUITO BREEDING IN COASTAL KENYA: IMPLICATIONS FOR CONTROL
AMER SOC TROP MED & HYGIENE. 2017: 56
View details for Web of Science ID 000423215202179
-
Observations of distributed snow depth and snow duration within diverse forest structures in a maritime mountain watershed
WATER RESOURCES RESEARCH
2015; 51 (11): 9353-9366
View details for DOI 10.1002/2015WR017873
View details for Web of Science ID 000368420000039