Clinical Focus

  • Neurology - Child Neurology
  • Pediatric Movement Disorders
  • Deep Brain Stimulation

Academic Appointments

Administrative Appointments

  • Co-Director, Stanford Pediatric Deep Brain Stimulation Program (2018 - Present)
  • Assistant Director, Stanford Child Neurology Residency Program (2019 - Present)
  • Coach, Stanford Pediatric Residency Coaching Program (2019 - Present)

Professional Education

  • Board Certification: American Board of Psychiatry and Neurology, Neurology - Child Neurology (2017)
  • Residency: Cincinnati Children's Hospital Medical Center (2016) OH
  • Residency: Cincinnati Children's Hospital Medical Center (2013) OH
  • Medical Education: University of Cincinnati College of Medicine (2011) OH

All Publications

  • Emerging Subspecialties: Pediatric Movement Disorders Neurology. Neurology Kahlon, S., Barton, C. R., Abu Libdeh, A., O'Malley, J. A., Pearson, T., Waugh, J. L., Wu, S. W., Zea Vera, A. G., Kruer, M. C. 2024; 102 (2): e208050


    Pediatric movement disorders (PMD) neurologists care for infants, children, and adolescents with conditions that disrupt typical movement; serving as important subspecialist child neurologists in both academic and private practice settings. In contrast to adult movement disorders neurologists whose "bread and butter" is hypokinetic Parkinson disease, PMD subspecialty practice is often dominated by hyperkinetic movement disorders including tics, dystonia, chorea, tremor, and myoclonus. PMD neurology practice intersects with a variety of subspecialties, including neonatology, developmental pediatrics, rehabilitation medicine, epilepsy, child & adolescent psychiatry, psychology, orthopedics, genetics & metabolism, and neurosurgery. Over the past several decades, significant advancements in the PMD field have included operationalizing definitions for distinct movement disorders, recognizing the spectrum of clinical phenotypes, expanding research on genetic and neuroimmunologic causes of movement disorders, and advancing available treatments. Subspecialty training in PMD provides trainees with advanced clinical, diagnostic, procedural, and management skills that reflect the complexities of contemporary practice. The child neurologist who is fascinated by the intricacies of child motor development, appreciates the power of observation skills coupled with a thoughtful physical examination, and is excited by the challenge of the unknown may be well-suited to a career as a PMD specialist.

    View details for DOI 10.1212/WNL.0000000000208050

    View details for PubMedID 38165345

  • SIGnature Libraries: A roadmap for the formation of special interest group libraries. Annals of the Child Neurology Society Kim, Y. M., Chin, E. M., Fahey, M., Gelineau-Morel, R., Himmelmann, K., O'Malley, J., Oskoui, M., Shapiro, B., Shevell, M., Wilson, J. L., Wiznitzer, M., Aravamuthan, B. 2023; 1 (3): 218-227


    "SIGnature Libraries" channel the dynamism of academic society-based special interest groups (SIG) to systematically identify and provide user-oriented access to essential literature for a subspecialty field in a manner that keeps pace with the field's continuing evolution. The libraries include literature beyond clinical trial data to encompass historical context, diagnostic conceptualization, and community organization materials to foster a holistic understanding of how neurologic conditions affect individuals, their community, and their lived experience.Utilizing a modified-Delphi approach, Child Neurology Society's Cerebral Palsy (CP) SIG (n = 75) administered two rounds of literature submissions and ratings. A final review by an 11-member international advisory group determined threshold ratings for resource inclusion and the library's final structure.Seventy-nine articles were submitted for the first Delphi round and 22 articles for the second Delphi round. Survey response rates among SIG members were 29/75 for the first round and 24/75 for the second round. The advisory board added additional articles in the final review process in view of the overall project goal. A total of 60 articles were included in the final library, and articles were divided into seven sections and stratified by rating scores. A process for ongoing revisions of the library was determined. The library will be published on the Child Neurology Society website and made publicly accessible.The CP SIGnature Library offers learners an unprecedented resource that provides equitable access to latest consensus guidelines, existing seminal datasets, up-to-date review articles, and other patient care tools. A distinctive feature of the library is its intentional large scope and depth, presented in a stratified fashion relative to the consensus-determined importance of each article. Learners can efficiently navigate the library based on individual interests and goals, and the library can be used as core curriculum for CP education.

    View details for DOI 10.1002/cns3.20021

    View details for PubMedID 37795255

    View details for PubMedCentralID PMC10550070

  • The Role of Child Neurologists in the Management of Motor Disability in Cerebral Palsy: Establishing the Path Forward. Pediatric neurology Gelineau-Morel, R., Kim, Y. M., O'Malley, J. A., Wilson, J. L., Aravamuthan, B. R. 2023; 144: 33-38


    Cerebral palsy (CP) is the most common motor disability of childhood, and yet the role of child neurologists and neurodevelopmentalists (CN/NDDs) in the management of children with CP is unclear. Although previous surveys showed that CN/NDDs believe they are uniquely expert in CP motor phenotyping and should be involved in CP management, others have demonstrated that training in CP management among CN/NDD residency programs is inadequate.In this article, we surveyed a group of CN/NDDs at the Child Neurology Society Cerebral Palsy Special Interest Group meeting on January 27, 2022. Questions addressed provider comfort with CP tone management including motor phenotyping, pharmacologic and surgical management, barriers and solutions to improving practice, and the use of systems-based care.Responses from 42 participants demonstrated that CN/NDDs lack experience with CP tone management, with 48% and 58% of respondents reporting little to no experience in pharmacologic or surgical management, respectively. Primary barriers identified to improving comfort with CP tone management included lack of knowledge and ineffective treatment options, while most solutions centered on improving collaborations between CN/NDDs and other specialties. Only 50% of respondents reported currently using systems-based care in the management of patients with CP.An interdisciplinary, systems-based care model would allow for collaboration and knowledge sharing between involved specialties and provide high-value goal-directed care to maximize the functional outcomes for every individual with CP.

    View details for DOI 10.1016/j.pediatrneurol.2023.03.018

    View details for PubMedID 37121109

  • Deep Brain Stimulation for Pediatric Dystonia: A Review of the Literature and Suggested Programming Algorithm. Journal of child neurology Gelineau-Morel, R., Kruer, M. C., Garris, J. F., Abu Libdeh, A., Barbosa, D. A., Coffman, K. A., Moon, D., Barton, C., Zea Vera, A., Bruce, A. B., Larsh, T., Wu, S. W., Gilbert, D. L., O'Malley, J. A. 2022: 8830738221115248


    Deep brain stimulation (DBS) is an established intervention for use in pediatric movement disorders, especially dystonia. Although multiple publications have provided guidelines for deep brain stimulation patient selection and programming in adults, there are no evidence-based or consensus statements published for pediatrics. The result is lack of standardized care and underutilization of this effective treatment. To this end, we assembled a focus group of 13 pediatric movement disorder specialists and 1 neurosurgeon experienced in pediatric deep brain stimulation to review recent literature and current practices and propose a standardized approach to candidate selection, implantation target site selection, and programming algorithms. For pediatric dystonia, we provide algorithms for (1) programming for initial session and follow-up sessions, and (2) troubleshooting side effects encountered during programming. We discuss common side effects, how they present, and recommendations for management. This topical review serves as a resource for movement disorders specialists interested in using deep brain stimulation for pediatric dystonia.

    View details for DOI 10.1177/08830738221115248

    View details for PubMedID 36053123

  • Diagnosis and Initial Treatment of Functional Movement Disorders in Children. Seminars in pediatric neurology Larsh, T., Wilson, J., Mackenzie, K. M., O'Malley, J. A. 2022; 41: 100953


    Functional movement disorders (FMD) are complex neurobehavioral disorders that can be a significant source of disability for both children and their caregivers. While FMD in the adult population is better characterized, the aim of this paper is to review the pertinent clinical and historical features, diagnostic criteria, and multi-disciplinary management of FMD in the pediatric population. We highlight recent trends in pediatric FMD, including the increase in functional tic-like behaviors that has been observed during the COVID-19 pandemic.

    View details for DOI 10.1016/j.spen.2022.100953

    View details for PubMedID 35450668

  • Cerebral Palsy in Child Neurology and Neurodevelopmental Disabilities Training: An Unmet Need JOURNAL OF CHILD NEUROLOGY Wilson, J. L., Kim, Y., O'Malley, J. A., Gelineau-Morel, R., Gilbert, L., Bain, J. M., Aravamuthan, B. R. 2022: 8830738211072711


    Cerebral palsy (CP) is the most common cause of childhood motor disability. However, there is limited guidance on training of child neurologists and neurodevelopmental disability specialists in the care of individuals with cerebral palsy. We sought to determine training program directors' impressions of the importance and adequacy of training in the diagnosis and management of cerebral palsy.In this cross-sectional study, all 82 child neurology and neurodevelopmental disability program directors were asked to complete a survey querying program characteristics, aspects of training in cerebral palsy, importance of cerebral palsy training, and perceived competence at graduation in cerebral palsy care.There were 35 responses (43% response rate). Nearly all program directors (91%) reported "learning to diagnose cerebral palsy" as very important, and most (71%) felt that "learning to manage cerebral palsy" was very important. Although most program directors reported trainees to be very or extremely competent in cerebral palsy diagnosis (77%), only 43% of program directors felt that trainees were very or extremely competent in cerebral palsy management. Time spent with cerebral palsy faculty was associated with higher reported competence in cerebral palsy diagnosis (P = .03) and management (P < .01). The presence of a cerebral palsy clinic was associated with higher reported competence in cerebral palsy management (P = .03).Child neurology and neurodevelopmental disability program directors reported that training in cerebral palsy is important for residents; however, a significant proportion felt that residents were not very well prepared to manage cerebral palsy. The development of cerebral palsy curricula and exposure to cerebral palsy clinics may improve training, translating to better care of individuals with cerebral palsy.

    View details for DOI 10.1177/08830738211072711

    View details for Web of Science ID 000748740600001

    View details for PubMedID 35037781

  • Deep Brain Stimulation for Pediatric Dystonia. Seminars in pediatric neurology Larsh, T., Wu, S. W., Vadivelu, S., Grant, G. A., O'Malley, J. A. 2021; 38: 100896


    Dystonia is one of the most common pediatric movement disorders and can have a profound impact on the lives of children and their caregivers. Response to pharmacologic treatment is often unsatisfactory. Deep brain stimulation (DBS) has emerged as a promising treatment option for children with medically refractory dystonia. In this review we highlight the relevant literature related to DBS for pediatric dystonia, with emphasis on the background, indications, prognostic factors, challenges, and future directions of pediatric DBS.

    View details for DOI 10.1016/j.spen.2021.100896

    View details for PubMedID 34183138

  • Role of child neurologists and neurodevelopmentalists in the diagnosis of cerebral palsy: A survey study. Neurology Aravamuthan, B. R., Shevell, M., Kim, Y., Wilson, J. L., O'Malley, J. A., Pearson, T. S., Kruer, M. C., Fahey, M., Waugh, J. L., Russman, B., Shapiro, B., Tilton, A. 2020


    OBJECTIVE: To contextualize the role of child neurologists and neurodevelopmentalists (CN/NDDs) in cerebral palsy (CP) care, we review the changing landscape of CP diagnosis and survey stakeholder CN/NDDs regarding their roles in CP care.METHODS: The optimal roles of the multiple specialties involved in CP care are currently unclear, particularly regarding CP diagnosis. We developed recommendations regarding the role of CN/NDDs noting: (1) increasing complexity of CP diagnosis given a growing number of genetic etiologies and treatable motor disorders that can be misdiagnosed as CP, and (2) the views of a group of physician stakeholders (CN/NDDs from the Child Neurology Society Cerebral Palsy Special Interest Group).RESULTS: CN/NDDs felt that they were optimally suited to diagnose CP. Many (76%) felt CN/NDDs should always be involved in CP diagnosis. However, 42% said their CP patients were typically not diagnosed by CN/NDDs and 18% did not receive referrals to establish the diagnosis of CP at all. CN/NDDs identified areas of their expertise critical for CP diagnosis including knowledge of the neurologic exam across development and early identification of features atypical for CP. This contrasts with their views on CP management, where CN/NDDs felt they could contribute to the medical team, but were necessary primarily when neurologic co-existing conditions were present.DISCUSSION: Given its increasing complexity, we recommend early referral for CP diagnosis to a CN/NDD or specialist with comparable expertise. This contrasts with current consensus guidelines which either do not address or do not recommend specific specialist referral for CP diagnosis.

    View details for DOI 10.1212/WNL.0000000000011036

    View details for PubMedID 33046609

  • Lacosamide-Induced Dyskinesia in Children With Intractable Epilepsy. Journal of child neurology Madani, N., O'Malley, J. A., Porter, B. E., Baumer, F. M. 2020: 883073820926634


    Lacosamide, an antiepileptic drug prescribed for children with refractory focal epilepsy, is generally well tolerated, with dose-dependent adverse effects. We describe 4 children who developed a movement disorder in conjunction with the initiation and/or uptitration of lacosamide. Three patients developed dyskinesias involving the face or upper extremity whereas the fourth had substantial worsening of chronic facial tics. The patients all had histories suggestive of opercular dysfunction: 3 had seizure semiologies including hypersalivation, facial and upper extremity clonus while the fourth underwent resection of polymicrogyria involving the opercula. Onset, severity, and resolution of dyskinesias correlated with lacosamide dosing. These cases suggest that pediatric patients with dysfunction of the opercular cortex are at increased risk for developing drug-induced dyskinesias on high-dose lacosamide therapy. Practitioners should be aware of this potential side effect and consider weaning lacosamide or video electroencephalography (EEG) for differential diagnosis, particularly in pediatric patients with underlying opercular dysfunction.

    View details for DOI 10.1177/0883073820926634

    View details for PubMedID 32524876

  • Clinical Approach to a Child with Movement Disorders SEMINARS IN PEDIATRIC NEUROLOGY O'Malley, J. A., Gilbert, D. L. 2018; 25 (1): 10–18


    Assessing movement can be especially challenging in children. Refined yet flexible observational examination skills and utilization of established phenomenological approaches are essential in distinguishing normal from abnormal movements in the developing child and reaching an appropriate diagnosis. Mastering such skill requires an appreciation of the unique features of the developing motor system and an understanding of key concepts underlying normal motor development in children. Establishing a trusting therapeutic relationship with the patient and family, minimizing anxiety, and utilizing observation and distraction during physical examination are essential to successful diagnosis and management.

    View details for PubMedID 29735108

  • Revealing the Prevalence and Consequences of Food Insecurity in Children with Epilepsy JOURNAL OF COMMUNITY HEALTH O'Malley, J. A., Klett, B. M., Klein, M. D., Inman, N., Beck, A. F. 2017; 42 (6): 1213–19


    Food insecurity (FI) affects more than one in five American children and is increasingly addressed during pediatric primary care. Its relevance during subspecialty care, including in the treatment of chronic conditions like epilepsy, is largely unknown. This study sought to determine the FI prevalence among children with epilepsy and examine the relationship between FI and healthcare utilization, health-related quality-of-life (HR-QOL), and medication side effect control. This was a retrospective cohort study using electronic health record data from children, aged 2-17 years, seen for epilepsy management at an academic pediatric hospital. The primary predictor was household FI status, determined using a validated screening tool employed in the hospital's pediatric neurology clinics. The primary outcome was unplanned healthcare utilization in the 6 months following initial FI screen. Secondary outcomes were standardized, validated assessments of HR-QOL and epilepsy medication side effects. Nearly 14% of the 691 children seen in the clinics for epilepsy lived in food insecure households. The impact of FI on healthcare utilization varied by race. For Caucasians, healthcare utilization rates were significantly higher among food insecure individuals than food secure individuals (37 vs. 17%, p = 0.003). Among African Americans, healthcare utilization rates did not vary with food security status (p = 0.6). Children in food insecure households had lower HR-QOL (p < 0.0001) and higher medication side effects (p = 0.0005). FI is common among children with epilepsy and may influence adverse health outcomes. Further exploration into how FI and other social determinants influence management of and determine outcomes for chronic diseases is warranted.

    View details for DOI 10.1007/s10900-017-0372-1

    View details for Web of Science ID 000413972300018

    View details for PubMedID 28477050

  • Interrogating the aged striatum: Robust survival of grafted dopamine neurons in aging rats produces inferior behavioral recovery and evidence of impaired integration NEUROBIOLOGY OF DISEASE Collier, T. J., O'Malley, J., Rademacher, D. J., Stancati, J. A., Sisson, K. A., Sortwell, C. E., Paumier, K. L., Gebremedhin, K. G., Steece-Collier, K. 2015; 77: 191–203


    Advanced age is the primary risk factor for Parkinson's disease (PD). In PD patients and rodent models of PD, advanced age is associated with inferior symptomatic benefit following intrastriatal grafting of embryonic dopamine (DA) neurons, a pattern believed to result from decreased survival and reinnervation provided by grafted neurons in the aged host. To help understand the capacity of the aged, parkinsonian striatum to be remodeled with new DA terminals, we used a grafting model and examined whether increasing the number of grafted DA neurons in aged rats would translate to enhanced behavioral recovery. Young (3months), middle-aged (15months), and aged (22months) parkinsonian rats were grafted with proportionately increasing numbers of embryonic ventral mesencephalic (VM) cells to evaluate whether the limitations of the graft environment in subjects of advancing age can be offset by increased numbers of transplanted neurons. Despite robust survival of grafted neurons in aged rats, reinnervation of striatal neurons remained inferior and amelioration of levodopa-induced dyskinesias (LID) was delayed or absent. This study demonstrates that: 1) counter to previous evidence, under certain conditions the aged striatum can support robust survival of grafted DA neurons; and 2) unknown factors associated with the aged striatum result in inferior integration of graft and host, and continue to present obstacles to full therapeutic efficacy of DA cell-based therapy in this model of aging.

    View details for DOI 10.1016/j.nbd.2015.03.005

    View details for Web of Science ID 000353612200017

    View details for PubMedID 25771169

    View details for PubMedCentralID PMC4402284

  • Advances in thin tissue Golgi-Cox impregnation: Fast, reliable methods for multi-assay analyses in rodent and non-human primate brain JOURNAL OF NEUROSCIENCE METHODS Levine, N. D., Rademacher, D. J., Collier, T. J., O'Malley, J. A., Kells, A. P., Sebastian, W., Bankiewicz, K. S., Steece-Collier, K. 2013; 213 (2): 214–27


    In 1873 Camillo Golgi discovered a staining technique that allowed for the visualization of whole neurons within the brain, initially termed 'the black reaction' and is now known as Golgi impregnation. Despite the capricious nature of this method, Golgi impregnation remains a widely used method for whole neuron visualization and analysis of dendritic arborization and spine quantification. We describe a series of reliable, modified 'Golgi-Cox' impregnation methods that complement some existing methods and have several advantages over traditional whole brain 'Golgi' impregnation. First, these methods utilize 60-100μm thick brain sections, which allows for fast, reliable impregnation of neurons in rats (7-14 days) and non-human primates (NHP) (30 days) while avoiding the pitfalls of other 'rapid Golgi' techniques traditionally employed with thin sections. Second, these methods employ several common tissue fixatives, resulting in high quality neuron impregnation in brain sections from acrolein, glutaraldehyde, and paraformaldehyde perfused rats, and in glutaraldehyde perfused NHP brain tissue. Third, because thin sections are obtained on a vibratome prior to processing, alternate sections of brain tissue can be used for additional analyses such as immunohistochemistry or electron microscopy. This later advantage allows for comparison of, for example, dendrite morphology in sections adjacent to pertinent histochemical markers or ultrastructural components. Finally, we describe a method for simultaneous light microscopic visualization of both tyrosine hydroxylase immunohistochemistry and Golgi impregnation in the same tissue section. Thus, the methods described here allow for fast, high quality Golgi impregnation and conserve experimental subjects by allowing multiple analyses within an individual animal.

    View details for DOI 10.1016/j.jneumeth.2012.12.001

    View details for Web of Science ID 000315557200007

    View details for PubMedID 23313849

    View details for PubMedCentralID PMC3574216

  • Obese and Hungry in the Suburbs: The Hidden Faces of Food Insecurity ACADEMIC PEDIATRICS O'Malley, J. A., Peltier, C. B., Klein, M. D. 2012; 12 (3): 163–65

    View details for DOI 10.1016/j.acap.2012.03.042

    View details for Web of Science ID 000304212400004

    View details for PubMedID 22583630

  • Quantification of Dysrhythmia in Children with ADHD Using a Novel Automated Goniometer Method O'Malley, J., Wu, S., Huddleston, D., Mostofsky, S., Gilbert, D. LIPPINCOTT WILLIAMS & WILKINS. 2012
  • Impact of dendritic spine preservation in medium spiny neurons on dopamine graft efficacy and the expression of dyskinesias in parkinsonian rats EUROPEAN JOURNAL OF NEUROSCIENCE Soderstrom, K. E., O'Malley, J. A., Levine, N. D., Sortwell, C. E., Collier, T. J., Steece-Collier, K. 2010; 31 (3): 478–90


    Dopamine deficiency associated with Parkinson's disease (PD) results in numerous changes in striatal transmitter function and neuron morphology. Specifically, there is marked atrophy of dendrites and dendritic spines on striatal medium spiny neurons (MSN), primary targets of inputs from nigral dopamine and cortical glutamate neurons, in advanced PD and rodent models of severe dopamine depletion. Dendritic spine loss occurs via dysregulation of intraspine Cav1.3 L-type Ca(2+)channels and can be prevented, in animal models, by administration of the calcium channel antagonist, nimodipine. The impact of MSN dendritic spine loss in the parkinsonian striatum on dopamine neuron graft therapy remains unexamined. Using unilaterally parkinsonian Sprague-Dawley rats, we tested the hypothesis that MSN dendritic spine preservation through administration of nimodipine would result in improved therapeutic benefit and diminished graft-induced behavioral abnormalities in rats grafted with embryonic ventral midbrain cells. Analysis of rotational asymmetry and spontaneous forelimb use in the cylinder task found no significant effect of dendritic spine preservation in grafted rats. However, analyses of vibrissae-induced forelimb use, levodopa-induced dyskinesias and graft-induced dyskinesias showed significant improvement in rats with dopamine grafts associated with preserved striatal dendritic spine density. Nimodipine treatment in this model did not impact dopamine graft survival but allowed for increased graft reinnervation of striatum. Taken together, these results demonstrate that even with grafting suboptimal numbers of cells, maintaining normal spine density on target MSNs results in overall superior behavioral efficacy of dopamine grafts.

    View details for DOI 10.1111/j.1460-9568.2010.07077.x

    View details for Web of Science ID 000274165700008

    View details for PubMedID 20105237

    View details for PubMedCentralID PMC2940228

  • Neural repair strategies for Parkinson's disease: insights from primate models CELL TRANSPLANTATION Soderstrom, K., O'Malley, J., Steece-Collier, K., Kordower, J. H. 2006; 15 (3): 251–65


    Nonhuman primate models of Parkinson's disease (PD) have been invaluable to our understanding of the human disease and in the advancement of novel therapies for its treatment. In this review, we attempt to give a brief overview of the animal models of PD currently used, with a more comprehensive focus on the advantages and disadvantages presented by their use in the nonhuman primate. In particular, discussion addresses the 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydopyridine (MPTP), rotenone, paraquat, and maneb parkinsonian models. Additionally, the role of primate PD models in the development of novel therapies, such as trophic factor delivery, grafting, and deep brain stimulation, are described. Finally, the contribution of primate PD models to our understanding of the etiology and pathology of human PD is discussed.

    View details for DOI 10.3727/000000006783982025

    View details for Web of Science ID 000237492500006

    View details for PubMedID 16719060