My research focuses on understanding disaster risk and resilience. I approach this challenge both from a fundamental point of view by advancing our understanding of the processes that govern extreme events in different natural systems and from an applied point of view by working with private and public partners to increase community resilience using a scientific co-production approach. My research group specializes in the development of customized mathematical models that are testable against observational data from a broad spectrum of scales. Our current research priorities span natural hazards like volcanic eruptions, climate hazards such as ice-sheet instability and permafrost disintegration, and hazards that arise from the interaction between natural processes and human interventions such as flooding in urban areas and induced earthquakes. I was recently awarded the Presidential Early Career Awards for Scientists and Engineers, the highest honor bestowed by the United States Government on science and engineering professionals in the early stages of their independent research careers.

Academic Appointments

Administrative Appointments

  • Research Fellow, Seismic Hazards, GeoForschungsZentrum (GFZ), Potsdam, Germany (2003 - 2004)
  • Research Fellow, Seismic Hazards, Institute de Recherche pour le Developpement (IRD), Nice, France (2003 - 2003)
  • Scientific Consultant, Communities at Risk Program, South Paci c Applied Geoscience Commission, Suva, Fiji Islands (2003 - 2003)
  • Research Assistant, GeoForschungsZentrum (GFZ), Potsdam, Germany, (2002 - 2002)
  • Freelancer, German National Commission for UNESCO, Berlin, Germany (2001 - 2002)
  • Consultant, South African National Commission for UNESCO, Pretoria, South Africa (2000 - 2000)

Honors & Awards

  • Miller Research Fellowship (declined), University of California, Berkeley (2010)
  • Ziff Environmental Fellow, Harvard Center for the Environment (2010)
  • Graduate Student Research Grant, Geological Society of America (2009)
  • Outstanding Student Paper Award, American Geophysical Union, Fall Meeting (2008)
  • Graduate Student Research Grant, Massachusetts Institute of Technology (2007 and 2009)
  • Presidential Fellow, Massachusetts Institute of Technology (2006-2007)
  • McCloy Scholar (comparable to the Rhodes Scholarship. Granted nationwide to six students per year.), German National Merit Foundation (2004-2005)
  • Scholarship, Robert Bosch and German National Merit Foundation (2002-2003)
  • Scholarship, German National Merit Foundation (1997-2002)

Professional Education

  • Ph.D, Massachusetts Institute of Technology, Geophysics (2011)
  • MPA, Harvard University, Kennedy School of Government, Master of Public Administration (2006)
  • M.Sc., Free University Berlin, Germany, Physics (with Distinction) (2002)


  • Contributing towards reducing tsunami risk in Indonesia, Stanford University, SIGMA group

    The goal of this project is to develop an integrated modeling approach for quantifying the protective services that coastal vegetation may provide for tsunami-prone areas. An important component of this research effort is to understand how the effectiveness of the protective services provided by vegetation depends on the intensity of the coastal hazard, the biophysical characteristics of the ecosystem, and on the socio-economic structure and the adaptive capacity of the coastal community.


    Banda Aceh, Indonesia


    • Abdul Muhari, Program Manager, Directorate of Coastal and Ocean, Ministry of Marine Affairs and Fisheries
    • Alvis Alvisyahrin, Senior scientist, Tsunami and Disaster Mitigation Research Center

2020-21 Courses

Stanford Advisees

All Publications

  • Crystal aggregates record the pre-eruptive flow field in the volcanic conduit at Kilauea, Hawaii. Science advances DiBenedetto, M., Qin, Z., Suckale, J. 2020; 6 (49)


    Developing reliable, quantitative conduit models that capture the physical processes governing eruptions is hindered by our inability to observe conduit flow directly. The closest we get to direct evidence is testimony imprinted on individual crystals or bubbles in the conduit and preserved by quenching during the eruption. For example, small crystal aggregates in products of the 1959 eruption of Kilauea Iki, Hawaii contain overgrown olivines separated by large, hydrodynamically unfavorable angles. The common occurrence of these aggregates calls for a flow mechanism that creates this crystal misorientation. Here, we show that the observed aggregates are the result of exposure to a steady wave field in the conduit through a customized, process-based model at the scale of individual crystals. We use this model to infer quantitative attributes of the flow at the time of aggregate formation; notably, the formation of misoriented aggregates is only reproduced in bidirectional, not unidirectional, conduit flow.

    View details for DOI 10.1126/sciadv.abd4850

    View details for PubMedID 33277257

  • When floods hit the road: Resilience to flood-related traffic disruption in the San Francisco Bay Area and beyond. Science advances Kasmalkar, I. G., Serafin, K. A., Miao, Y., Bick, I. A., Ortolano, L., Ouyang, D., Suckale, J. 2020; 6 (32): eaba2423


    As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, interannual anomalies driven by large-scale climate variability such as the El Nino Southern Oscillation, and sea level rise. When identifying inundated roads, we propose corrections for potential biases arising from model integration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show that metric reach, a measure of road network density, is a better proxy for delays than flood exposure.

    View details for DOI 10.1126/sciadv.aba2423

    View details for PubMedID 32821823

  • The protective benefits of tsunami mitigation parks and ramifications for their strategic design. Proceedings of the National Academy of Sciences of the United States of America Lunghino, B., Santiago Tate, A. F., Mazereeuw, M., Muhari, A., Giraldo, F. X., Marras, S., Suckale, J. 2020


    Nature-based solutions are becoming an increasingly important component of sustainable coastal risk management. For particularly destructive hazards like tsunamis, natural elements like vegetation are often combined with designed elements like seawalls or dams to augment the protective benefits of each component. One example of this kind of hybrid approach is the so-called tsunami mitigation park, which combines a designed hillscape with vegetation. Despite the increasing popularity of tsunami mitigation parks, the protective benefits they provide are poorly understood and incompletely quantified. As a consequence of this lack of understanding, current designs might not maximize the protective benefits of tsunami mitigation parks. Here, we numerically model the interactions between a single row of hills with an incoming tsunami to identify the mechanisms through which the park protects the coast. We initialize the tsunami as an N wave that propagates to shore and impacts the coast directly. We find that partial reflection of the incoming wave is the most important mechanism by which hills reduce the kinetic energy that propagates onshore. The protective benefit of tsunami mitigation parks is thus comparable to that of a small wall, at least for tsunamis with amplitudes that are comparable to the hill height. We also show that hills could elevate potential damage in the immediate vicinity of the hills where flow speeds increase compared to a planar beach, suggesting the need to include a buffer zone behind the hills into a strategic park design.

    View details for DOI 10.1073/pnas.1911857117

    View details for PubMedID 32366652

  • Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs) GEOSCIENTIFIC MODEL DEVELOPMENT Rass, L., Licul, A., Herman, F., Podladchikov, Y. Y., Suckale, J. 2020; 13 (3): 955–76
  • Crystal Fractionation by Crystal-Driven Convection GEOPHYSICAL RESEARCH LETTERS Culha, C., Suckale, J., Keller, T., Qin, Z. 2020; 47 (4)
  • Flow-to-Sliding Transition in Crystal-Bearing Magma JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Qin, Z., Suckale, J. 2020; 125 (2)
  • Direct numerical simulations of viscous suspensions with variably shaped crystals JOURNAL OF COMPUTATIONAL PHYSICS Qin, Z., Allison, K., Suckale, J. 2020; 401
  • Periodic outgassing as a result of unsteady convection in Ray lava lake, Mount Erebus, Antarctica EARTH AND PLANETARY SCIENCE LETTERS Birnbaum, J., Keller, T., Suckale, J., Lev, E. 2020; 530
  • A continuum model of multi-phase reactive transport in igneous systems GEOPHYSICAL JOURNAL INTERNATIONAL Keller, T., Suckale, J. 2019; 219 (1): 185–222

    View details for DOI 10.1093/gji/ggz287

    View details for Web of Science ID 000484124800011

  • Spatial heterogeneity in subglacial drainage driven by till erosion PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES Kasmalkar, I., Mantelli, E., Suckale, J. 2019; 475 (2228)
  • Slug Stability in Flaring Geometries and Ramifications for Lava Lake Degassing JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Qin, Z., Soldati, A., Santana, L., Rust, A. C., Suckale, J., Cashman, K. V. 2018; 123 (12): 10431–48
  • Bistability of buoyancy-driven exchange flows in vertical tubes JOURNAL OF FLUID MECHANICS Suckale, J., Qin, Z., Picchi, D., Keller, T., Battiato, I. 2018; 850: 525–50
  • Adding a community partner to service learning may elevate learning but not necessarily service INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION Suckale, J., Saiyed, Z., Hilley, G., Alvisyahrin, T., Muhari, A., Zoback, M., Truebe, S. 2018; 28: 80–87
  • A residual-based shock capturing scheme for the continuous/discontinuous spectral element solution of the 2D shallow water equations ADVANCES IN WATER RESOURCES Marras, S., Kopera, M., Constantinescu, E., Suckale, J., Giraldo, F. X. 2018; 114: 45–63
  • Sediment behavior controls equilibrium width of subglacial channels JOURNAL OF GLACIOLOGY Damsgaard, A., Suckale, J., Piotrowski, J. A., Houssais, M., Siegfried, M. R., Fricker, H. A. 2017; 63 (242): 1034–48
  • Direct numerical simulations of gas-solid-liquid interactions in dilute fluids INTERNATIONAL JOURNAL OF MULTIPHASE FLOW Qin, Z., Suckale, J. 2017; 96: 34–47
  • Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands GEOPHYSICAL RESEARCH LETTERS Dempsey, D., Suckale, J. 2017; 44 (15): 7773–82
  • Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities. Annals of the New York Academy of Sciences Arkema, K. K., Griffin, R., Maldonado, S., Silver, J., Suckale, J., Guerry, A. D. 2017


    Interest in the role that ecosystems play in reducing the impacts of coastal hazards has grown dramatically. Yet the magnitude and nature of their effects are highly context dependent, making it difficult to know under what conditions coastal habitats, such as saltmarshes, reefs, and forests, are likely to be effective for saving lives and protecting property. We operationalize the concept of natural and nature-based solutions for coastal protection by adopting an ecosystem services framework that propagates the outcome of a management action through ecosystems to societal benefits. We review the literature on the basis of the steps in this framework, considering not only the supply of coastal protection provided by ecosystems but also the demand for protective services from beneficiaries. We recommend further attention to (1) biophysical processes beyond wave attenuation, (2) the combined effects of multiple habitat types (e.g., reefs, vegetation), (3) marginal values and expected damage functions, and, in particular, (4) community dependence on ecosystems for coastal protection and co-benefits. We apply our approach to two case studies to illustrate how estimates of multiple benefits and losses can inform restoration and development decisions. Finally, we discuss frontiers for linking social, ecological, and physical science to advance natural and nature-based solutions to coastal protection.

    View details for DOI 10.1111/nyas.13322

    View details for PubMedID 28370069

  • Flow-to-fracture transition in a volcanic mush plug may govern normal eruptions at Stromboli GEOPHYSICAL RESEARCH LETTERS Suckale, J., Keller, T., Cashman, K. V., Persson, P. 2016; 43 (23): 12071-12081
  • Rapid ice flow rearrangement induced by subglacial drainage inWest Antarctica GEOPHYSICAL RESEARCH LETTERS Elsworth, C. W., Suckale, J. 2016; 43 (22): 11697-11707
  • Determining conditions that allow a shear margin to coincide with a Rothlisberger channel JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE Platt, J. D., Perol, T., Suckale, J., Rice, J. R. 2016; 121 (7): 1273-1294
  • Collective properties of injection-induced earthquake sequences: 2. Spatiotemporal evolution and magnitude frequency distributions JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Dempsey, D., Suckale, J., Huang, Y. 2016; 121 (5): 3638-3665
  • Collective properties of injection-induced earthquake sequences: 1. Model description and directivity bias JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Dempsey, D., Suckale, J. 2016; 121 (5): 3609-3637
  • Subglacial hydrology and ice stream margin locations JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE Perol, T., Rice, J. R., Platt, J. D., Suckale, J. 2015; 120 (7): 1352-1368
  • Deformation-induced melting in the margins of the West Antarctic ice streams JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE Suckale, J., Platt, J. D., Perol, T., Rice, J. R. 2014; 119 (5): 1004-1025
  • Deformation-induced melting in the margin of Whillans ice stream (B2), Siple Coast, Antarctica, and implications for ice-stream dynamics Journal of Geophysical Research Suckale, J., Platt, J., Rice, J. R. 2014; 119
  • Crystals stirred up: 2. Numerical insights into the formation of the earliest crust on the Moon JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS Suckale, J., Elkins-Tanton, L. T., Sethian, J. A. 2012; 117
  • Crystals stirred up: 1. Direct numerical simulations of crystal settling in nondilute magmatic suspensions JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS Suckale, J., Sethian, J. A., Yu, J., Elkins-Tanton, L. T. 2012; 117
  • Reply to the comment by Mike R. James et al. on "It takes three to tango: 2. Bubble dynamics in basaltic volcanoes and ramifications for modeling normal Strombolian activity" JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Suckale, J., Hager, B. H., Elkins-Tanton, L. T., Nave, J. 2011; 116
  • It takes three to tango: 2. Bubble dynamics in basaltic volcanoes and ramifications for modeling normal Strombolian activity JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Suckale, J., Hager, B. H., Elkins-Tanton, L. T., Nave, J. 2010; 115
  • It takes three to tango: 1. Simulating buoyancy-driven flow in the presence of large viscosity contrasts JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Suckale, J., Nave, J., Hager, B. H. 2010; 115
  • Large to Moderate Seismicity Induced by Hydrocarbon Production The Leading Edge Suckale, J. 2010; 29: 310-319
  • Probabilistic Seismic Hazard Model for Vanuatu BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA Suckale, J., Gruenthal, G. 2009; 99 (4): 2108-2126

    View details for DOI 10.1785/0120080188

    View details for Web of Science ID 000268459800002

  • High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves GEOPHYSICAL JOURNAL INTERNATIONAL Suckale, J., Rondenay, S., Sachpazi, M., Charalampakis, M., Hosa, A., Royden, L. H. 2009; 178 (2): 775-791