Jon Stingel
Ph.D. Student in Mechanical Engineering, admitted Spring 2018
All Publications
-
AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization.
PloS one
2023; 18 (11): e0295152
Abstract
Creating large-scale public datasets of human motion biomechanics could unlock data-driven breakthroughs in our understanding of human motion, neuromuscular diseases, and assistive devices. However, the manual effort currently required to process motion capture data and quantify the kinematics and dynamics of movement is costly and limits the collection and sharing of large-scale biomechanical datasets. We present a method, called AddBiomechanics, to automate and standardize the quantification of human movement dynamics from motion capture data. We use linear methods followed by a non-convex bilevel optimization to scale the body segments of a musculoskeletal model, register the locations of optical markers placed on an experimental subject to the markers on a musculoskeletal model, and compute body segment kinematics given trajectories of experimental markers during a motion. We then apply a linear method followed by another non-convex optimization to find body segment masses and fine tune kinematics to minimize residual forces given corresponding trajectories of ground reaction forces. The optimization approach requires approximately 3-5 minutes to determine a subject's skeleton dimensions and motion kinematics, and less than 30 minutes of computation to also determine dynamically consistent skeleton inertia properties and fine-tuned kinematics and kinetics, compared with about one day of manual work for a human expert. We used AddBiomechanics to automatically reconstruct joint angle and torque trajectories from previously published multi-activity datasets, achieving close correspondence to expert-calculated values, marker root-mean-square errors less than 2 cm, and residual force magnitudes smaller than 2% of peak external force. Finally, we confirmed that AddBiomechanics accurately reproduced joint kinematics and kinetics from synthetic walking data with low marker error and residual loads. We have published the algorithm as an open source cloud service at AddBiomechanics.org, which is available at no cost and asks that users agree to share processed and de-identified data with the community. As of this writing, hundreds of researchers have used the prototype tool to process and share about ten thousand motion files from about one thousand experimental subjects. Reducing the barriers to processing and sharing high-quality human motion biomechanics data will enable more people to use state-of-the-art biomechanical analysis, do so at lower cost, and share larger and more accurate datasets.
View details for DOI 10.1371/journal.pone.0295152
View details for PubMedID 38033114
-
Simulating Muscle-Level Energetic Cost Savings When Humans Run with a Passive Assistive Device.
IEEE robotics and automation letters
2023; 8 (10): 6267-6274
Abstract
Connecting the legs with a spring attached to the shoelaces, called an exotendon, can reduce the energetic cost of running, but how the exotendon reduces the energetic burden of individual muscles remains unknown. We generated muscle-driven simulations of seven individuals running with and without the exotendon to discern whether savings occurred during the stance phase or the swing phase, and to identify which muscles contributed to energy savings. We computed differences in muscle-level energy consumption, muscle activations, and changes in muscle-fiber velocity and force between running with and without the exotendon. The seven of nine participants who reduced energy cost when running with the exotendon reduced their measured energy expenditure rate by 0.9 W/kg (8.3%). Simulations predicted a 1.4 W/kg (12.0%) reduction in the average rate of energy expenditure and correctly identified that the exotendon reduced rates of energy expenditure for all seven individuals. Simulations showed most of the savings occurred during stance (1.5 W/kg), though the rate of energy expenditure was also reduced during swing (0.3 W/kg). The energetic savings were distributed across the quadriceps, hip flexor, hip abductor, hamstring, hip adductor, and hip extensor muscle groups, whereas no changes were observed in the plantarflexor or dorsiflexor muscles. Energetic savings were facilitated by reductions in the rate of mechanical work performed by muscles and their estimated rate of heat production. By modeling muscle-level energetics, this simulation framework accurately captured measured changes in whole-body energetics when using an assistive device. This is a useful first step towards using simulation to accelerate device design by predicting how humans will interact with assistive devices that have yet to be built.
View details for DOI 10.1109/lra.2023.3303094
View details for PubMedID 37745177
View details for PubMedCentralID PMC10512759
-
AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization.
bioRxiv : the preprint server for biology
2023
Abstract
Creating large-scale public datasets of human motion biomechanics could unlock data-driven breakthroughs in our understanding of human motion, neuromuscular diseases, and assistive devices. However, the manual effort currently required to process motion capture data and quantify the kinematics and dynamics of movement is costly and limits the collection and sharing of large-scale biomechanical datasets. We present a method, called AddBiomechanics, to automate and standardize the quantification of human movement dynamics from motion capture data. We use linear methods followed by a non-convex bilevel optimization to scale the body segments of a musculoskeletal model, register the locations of optical markers placed on an experimental subject to the markers on a musculoskeletal model, and compute body segment kinematics given trajectories of experimental markers during a motion. We then apply a linear method followed by another non-convex optimization to find body segment masses and fine tune kinematics to minimize residual forces given corresponding trajectories of ground reaction forces. The optimization approach requires approximately 3-5 minutes to determine a subjecťs skeleton dimensions and motion kinematics, and less than 30 minutes of computation to also determine dynamically consistent skeleton inertia properties and fine-tuned kinematics and kinetics, compared with about one day of manual work for a human expert. We used AddBiomechanics to automatically reconstruct joint angle and torque trajectories from previously published multi-activity datasets, achieving close correspondence to expert-calculated values, marker root-mean-square errors less than 2cm, and residual force magnitudes smaller than 2% of peak external force. Finally, we confirmed that AddBiomechanics accurately reproduced joint kinematics and kinetics from synthetic walking data with low marker error and residual loads. We have published the algorithm as an open source cloud service at AddBiomechanics.org, which is available at no cost and asks that users agree to share processed and de-identified data with the community. As of this writing, hundreds of researchers have used the prototype tool to process and share about ten thousand motion files from about one thousand experimental subjects. Reducing the barriers to processing and sharing high-quality human motion biomechanics data will enable more people to use state-of-the-art biomechanical analysis, do so at lower cost, and share larger and more accurate datasets.
View details for DOI 10.1101/2023.06.15.545116
View details for PubMedID 37398034
View details for PubMedCentralID PMC10312696
-
How Connecting the Legs with a Spring Improves Human Running Economy.
bioRxiv : the preprint server for biology
2023
Abstract
Connecting the legs with a spring attached to the shoelaces reduces the energy cost of running, but how the spring reduces the energy burden of individual muscles remains unknown. We generated muscle-driven simulations of seven individuals running with and without the spring to discern whether savings occurred during the stance phase or the swing phase, and to identify which muscles contributed to energy savings. We computed differences in muscle-level energy consumption, muscle activations, and changes in muscle-fiber velocity and force between running with and without the spring. Across participants, running with the spring reduced the measured rate of energy expenditure by 0.9 W/kg (8.3%). Simulations predicted a 1.4 W/kg (12.0%) reduction in the average rate of energy expenditure and correctly identified that the spring reduced rates of energy expenditure for all participants. Simulations showed most of the savings occurred during stance (1.5 W/kg), though the rate of energy expenditure was also reduced during swing (0.3 W/kg). The energetic savings were distributed across the quadriceps, hip flexor, hip abductor, hamstring, hip adductor, and hip extensor muscle groups, whereas no changes in the rate of energy expenditure were observed in the plantarflexor or dorsiflexor muscles. Energetic savings were facilitated by reductions in the rate of mechanical work performed by muscles and their estimated rate of heat production. The simulations provide insight into muscle-level changes that occur when utilizing an assistive device and the mechanisms by which a spring connecting the legs improves running economy.
View details for DOI 10.1101/2023.04.03.535498
View details for PubMedID 37066206
View details for PubMedCentralID PMC10104051