
Josiah Yarbrough
Ph.D. Student in Chemical Engineering, admitted Autumn 2018
Other Tech - Graduate, Stanford Nano Shared Facilities
Education & Certifications
-
BS, Rice University, Chemical Engineering (2018)
All Publications
-
MYC oncogene elicits tumorigenesis associated with embryonic, ribosomal biogenesis, and tissue-lineage dedifferentiation gene expression changes.
Oncogene
2022
Abstract
MYC is a transcription factor frequently overexpressed in cancer. To determine how MYC drives the neoplastic phenotype, we performed transcriptomic analysis using a panel of MYC-driven autochthonous transgenic mouse models. We found that MYC elicited gene expression changes mostly in a tissue- and lineage-specific manner across B-cell lymphoma, T-cell acute lymphoblastic lymphoma, hepatocellular carcinoma, renal cell carcinoma, and lung adenocarcinoma. However, despite these gene expression changes being mostly tissue-specific, we uncovered a convergence on a common pattern of upregulation of embryonic stem cell gene programs and downregulation of tissue-of-origin gene programs across MYC-driven cancers. These changes are representative of lineage dedifferentiation, that may be facilitated by epigenetic alterations that occur during tumorigenesis. Moreover, while several cellular processes are represented among embryonic stem cell genes, ribosome biogenesis is most specifically associated with MYC expression in human primary cancers. Altogether, MYC's capability to drive tumorigenesis in diverse tissue types appears to be related to its ability to both drive a core signature of embryonic genes that includes ribosomal biogenesis genes as well as promote tissue and lineage specific dedifferentiation.
View details for DOI 10.1038/s41388-022-02458-9
View details for PubMedID 36207533
-
Tuning Molecular Inhibitors and Aluminum Precursors for the AreaSelective Atomic Layer Deposition of Al2O3 br
CHEMISTRY OF MATERIALS
2022; 34 (10): 4646-4659
View details for DOI 10.1021/acs.chemmater.2c00513
View details for Web of Science ID 000805874800038
-
Next generation nanopatterning using small molecule inhibitors for area-selective atomic layer deposition
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
2021; 39 (2)
View details for DOI 10.1116/6.0000840
View details for Web of Science ID 000631009400001
-
Evaluation of solvents for in-situ asphaltene deposition remediation
FUEL
2019; 241: 1076-1084
View details for DOI 10.1016/j.fuel.2018.12.080
View details for Web of Science ID 000458760500108
-
Assessment of the performance of asphaltene inhibitors using a multi-section packed bed column
FUEL
2019; 241: 247-254
View details for DOI 10.1016/j.fuel.2018.11.059
View details for Web of Science ID 000458760500024
-
Investigation of Asphaltene Deposition at High Temperature and under Dynamic Conditions
ENERGY & FUELS
2018; 32 (12): 12405-12415
View details for DOI 10.1021/acs.energyfuels.8b03318
View details for Web of Science ID 000454567000037
-
A Shipping Container-Based Sterile Processing Unit for Low Resources Settings
PLOS ONE
2016; 11 (3): e0149624
Abstract
Deficiencies in the sterile processing of medical instruments contribute to poor outcomes for patients, such as surgical site infections, longer hospital stays, and deaths. In low resources settings, such as some rural and semi-rural areas and secondary and tertiary cities of developing countries, deficiencies in sterile processing are accentuated due to the lack of access to sterilization equipment, improperly maintained and malfunctioning equipment, lack of power to operate equipment, poor protocols, and inadequate quality control over inventory. Inspired by our sterile processing fieldwork at a district hospital in Sierra Leone in 2013, we built an autonomous, shipping-container-based sterile processing unit to address these deficiencies. The sterile processing unit, dubbed "the sterile box," is a full suite capable of handling instruments from the moment they leave the operating room to the point they are sterile and ready to be reused for the next surgery. The sterile processing unit is self-sufficient in power and water and features an intake for contaminated instruments, decontamination, sterilization via non-electric steam sterilizers, and secure inventory storage. To validate efficacy, we ran tests of decontamination and sterilization performance. Results of 61 trials validate convincingly that our sterile processing unit achieves satisfactory outcomes for decontamination and sterilization and as such holds promise to support healthcare facilities in low resources settings.
View details for DOI 10.1371/journal.pone.0149624
View details for Web of Science ID 000372701200018
View details for PubMedID 27007568
View details for PubMedCentralID PMC4805258