Bio


Juan Rivas is an Associate Professor at Stanford’s Electrical Engineering department. Before, he worked for GE Global Research in the high-frequency power electronics group. He has extensive experience in the design of dc-dc power converters working at MHz frequencies. He has published peer-reviewed work on power converters reaching up to 100 MHz using Si and WBG devices. He obtained his doctoral degree from MIT in 2006. His research interests include power electronics, resonant converters, resonant gate drive techniques, high-frequency magnetics, and finding new applications for power converters

Academic Appointments


Honors & Awards


  • Best Paper: HF Bidirectional Resonant Converter for High Conversion Ratio & Variable Load Operation, Control and Modeling for Power Electronics Workshop (2018)
  • Faculty Early Career Development (CAREER) Program”, National Science Foundation (2013)
  • Best Paper Award: "13.56 MHz high voltage multi-level resonant DC-DC converter", Control and Modeling for Power Electronics Workshop (2015)
  • Transactions Paper Award: "Resistance Compression Networks for Radio-Frequency Power conversion", IEEE Power Electronics Society (2007)
  • 2nd Prize Award: High Frequency Resonant SEPIC Converter With Wide Input and Output Voltage Ranges'', IEEE Power Electronics Society (2012)

Program Affiliations


  • Stanford SystemX Alliance

Professional Education


  • B.A., ITESM, Mexico City Campus, Electrical and Communications Engineering (1998)
  • S.M., Massachusetts Institute of Technology, Output Power Increase at Idle Speed in Alternators (2003)
  • Sc.D., Massachusetts Institute of Technology, Radio Frequency dc-dc Power Conversion (2006)

Patents


  • Juan M. Rivas Davila, Wei Liang, Luke C. Raymond. "United States Patent US11,031,179B2 Passive Components For Electronic Circuits Using Conformal Deposition on a Scaffold", The Board of Trustees of the Leland Stanford Junior University, Jun 8, 2021
  • Luke C. Raymond, Wei Liang, Juan M. Rivas Davila. "United States Patent US10218276B2 Isolated Multi-Level Resonant Topologies for Wide-Range Power Conversion and Impedance Matching", Leland Stanford Junior University, Feb 26, 2019
  • John R. Goscha, Victor D. Roberts, Juan Manuel Rivas-Davila, Luke Christopher Raymond. "United States Patent 9,305,765B2 High frequency induction lighting", Lucidity Lights, Inc., Apr 5, 2016
  • Juan Manuel Rivas Davila, Randall Henry Buchwald. "United States Patent 8,829,905 B2 Magnetic resonance imaging compatible switched mode power supply", General Electric Company, Sep 9, 2014
  • Juan Manuel Rivas Davila, Ljubisa Dragoljub Stevanovic, Juan Antonio Sabate. "United States Patent 8,760,164 Magnetic resonant imaging gradient driver architecture", General Electric Company, Jun 24, 2014
  • Satish Prabhakaran, John Stanley Glaser, Ljubisa Dragoljub Stevanovic, Juan Manuel Rivas Davila. "United States Patent US 8567046 B2 Methods for making magnetic components", General Electric Company, Oct 29, 2013
  • Rixin Lai, Luis Jose Garces, Juan Antonio Sabate, Juan Manuel Rivas Davila, Song Chi, Wesley Michael Skeffington,. "United States Patent US 8502539 B2 Gradient amplifier system", General Electric Company, Jul 31, 2013
  • Mehmet Arik, Tunc Icoz, Juan Manuel Rivas Davila, Charles Erklin Seeley, Yogen Vishwas Utturkar, Stanton Earl Weaver, Jr.. "United States Patent US 8496049 B2 Heat sinks with distributed and integrated jet cooling", General Electric Company, Jul 30, 2013
  • John Stanley Glaser, Juan Manuel Rivas Davila. "United States Patent US 7924580 B2 Switching inverters and converters for power conversion", General Electric Company, Apr 12, 2011
  • David J. Perreault, Juan M. Rivas, Anthony D. Sagneri, Olivia Leitermann, Yehui Han, Robert C. N. Pilawa-Podgurski,. "United States Patent 7,889,519 B2 Methods and apparatus for a resonant converter", Massachusetts Institute Of Technology, Feb 15, 2011
  • David J. Perreault, Juan M. Rivas, Yehui Han, Olivia Leitermann. "United States Patent 7535133 B2 Methods and apparatus for resistance compression networks", Massachusetts Institute Of Technology, May 19, 2009

Current Research and Scholarly Interests


Modern applications are driving demand for power systems with capabilities beyond what is presently achievable. High performance systems, like medical imaging systems and other applications impose challenging specifications on power density and bandwidth that are difficult to achieve with current circuit topologies. Power density can be improved with better semiconductor components and passive elements, and by reducing the energy storage requirements of the system. By dramatically increasing the switching frequency, it is possible to reduce the energy storage requirements and improve bandwidth. I'm interested in the development of system architectures and circuit topologies for dc-ac and dc-dc power conversion that can reach switching frequencies of 10’s to 100’s of MHz. Switching at these frequencies will lead to efficient converters with inductors and transformers having no magnetic material to limit their high frequency performance, and with small-valued capacitors.
At these switching frequencies, all inductors can be air-cored, eliminating core losses, saturation, and extending their operating temperature range. I have been involved in the development of dc-dc converter that archives a significant reduction in peak switch voltage stress, requires small passive components with low energy storage, and provides the capability for extremely rapid startup and shutdown.

Another goal of my work is to implement a value-added strategy in inexpensive printed circuit boards (PCB) by fabricating all passive devices of a power converter (inductors and capacitors) with traces, transforming the PCB into a 3-D resonant structure. This approach will eliminate tuning and component variation while simultaneously maintaining extraordinary levels of performance at reduced cost. Moreover, there a lot of exciting applications for these high frequency circuits.

2024-25 Courses


Stanford Advisees


All Publications


  • Design of a High-Voltage Low-Ripple Converter With High-Frequency Dickson Multipliers IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS Ye, Z., Surakitbovorn, K., Lin, C. H., Rivas-Davila, J. 2024
  • Class-φ2 Power Amplifier With Resonant Gate Driver: High-Efficiency Power Amplifier for 50 MHz IEEE MICROWAVE MAGAZINE Ye, Z., Lin, C. H., Rivas-Davila, J. 2024; 25 (6): 88-92
  • A Spurious-Free Piezoelectric Resonator Based 3.2 kW DC-DC Converter for EV On-Board Chargers IEEE TRANSACTIONS ON POWER ELECTRONICS Stolt, E., Braun, W., Nguyen, K., Chulukhadze, V., Lu, R., Rivas-Davila, J. 2024; 39 (2): 2478-2488
  • A Stacked Piezoelectric Converter Using a Segmented IDT Lithium Niobate Resonator IEEE OPEN JOURNAL OF POWER ELECTRONICS Braun, W. D., Stolt, E. A., Nguyen, K., Segovia-Fernandez, J., Chakraborty, S., Lu, R., Rivas-Davila, J. M. 2024; 5: 286-294
  • Near Spurious-Free Thickness Shear Mode Lithium Niobate Resonator for Piezoelectric Power Conversion. IEEE transactions on ultrasonics, ferroelectrics, and frequency control Nguyen, K., Chulukhadze, V., Stolt, E., Braun, W., Segovia-Fernandez, J., Chakraborty, S., Rivas, J., Lu, R. 2023; PP

    Abstract

    Piezoelectric power converters, where acoustic resonators replace the inductors as energy storage elements, promise much higher power density and higher efficiency compared to conventional circuits. Recently, lithium niobate (LiNbO3) piezoelectric resonators have been integrated within power converter circuits, showing good conversion efficiency, thanks to their high quality factor (Q) and electromechanical coupling (kt2). However, the converter output power range is limited by large spurious modes near resonance. This work reports a near-spurious-free LiNbO3 thickness shear (TS) resonator, demonstrating high Q of 3500 and kt2 of 45% at 5.94 MHz, with a fractional suppressed region of 35%. First, we identify the best LiNbO3 crystal orientation for efficient TS resonators. Then, we propose a novel acoustic design without busbars for spurious suppression, which is extensively simulated, fabricated, and characterized. Further analysis is done to identify existing spurious modes in our proposed design, specifically the effect of dicing on our TS resonator design. Upon optimization, LiNbO3 TS resonators could potentially empower a new design space for low-loss and compact power converters.

    View details for DOI 10.1109/TUFFC.2023.3303123

    View details for PubMedID 37549088

  • A Novel High-Efficiency Three-Phase Multilevel PV Inverter With Reduced DC-Link Capacitance IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS Chen, T., Gu, L., Dally, W. J., Rivas-Davila, J., Fox, J. 2023; 70 (5): 4751-4761
  • Wideband PPT Class Phi(2) Inverter Using Phase-Switched Impedance Modulation and Reactance Compensation IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS Tong, Z., Gu, L., Rivas-Davila, J. 2022; 69 (6): 5724-5734
  • Real-time Selective Harmonic Minimization Using a Hybrid Analog/Digital Computing Method IEEE TRANSACTIONS ON POWER ELECTRONICS Poon, J., Sinha, M., Dhople, S. V., Rivas-Davila, J. 2022; 37 (5): 5078-5088
  • A Simple Method to Combine the Output Power From Multiple Class-E Power Amplifiers IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS Surakitbovorn, K., Rivas-Davila, J. M. 2022; 10 (2): 2245-2253
  • Class DE Switch-Mode Power Amplifier Using GaN Power HEMTs IEEE MICROWAVE MAGAZINE Tong, Z., Ye, Z., Rivas-Davila, J. 2022; 23 (3): 72-79
  • Frequency-Selective MHz Power Amplifier for Dielectric Barrier Discharge Plasma Generation IEEE OPEN JOURNAL OF POWER ELECTRONICS Xu, J., Surakitbovorn, K., Wang, B., Cappelli, M. A., Rivas-Davila, J. 2022; 3: 846-855
  • 1 kW MHz Wideband Class E Power Amplifier IEEE OPEN JOURNAL OF POWER ELECTRONICS Xu, J., Tong, Z., Rivas-Davila, J. 2022; 3: 84-92
  • Plasma-fixated nitrogen as fertilizer for turf grass RSC ADVANCES Sze, C., Wang, B., Xu, J., Rivas-Davila, J., Cappelli, M. A. 2021; 11 (60): 37886-37895

    View details for DOI 10.1039/d1ra07074f

    View details for Web of Science ID 000721892900001

  • Plasma-fixated nitrogen as fertilizer for turf grass. RSC advances Sze, C., Wang, B., Xu, J., Rivas-Davila, J., Cappelli, M. A. 2021; 11 (60): 37886-37895

    Abstract

    We investigated the use of plasma-fixated nitrogen, which produces nitrates (NO3 -) in water, as a possible nitrogen fertilizer for recreational turf such as rye grass and bent grass. Experiments were carried out to study the effects of nitrate concentration on growth, the further effects of adding phosphorous (P) and potassium (K) to the plasma nitrated solution to make an N-P-K complete fertilizer, and to compare the efficacy of plasma-fixated nitrogen to sodium nitrate (NaNO3) and potassium nitrate (KNO3). The results indicate that the growth and biomass of the plants were strongly dependent on the concentration of the plasma-fixated nitrogen. Adding P-K to the plasma-fixated nitrogen improved grass growth. Grass that was supplied plasma-fixated nitrogen had improved growth compared to those supplied with equal amounts of NaNO3 and KNO3. This work highlights the potential use of plasma-fixated nitrogen as a fertilizer source for commonly used turf grass.

    View details for DOI 10.1039/d1ra07074f

    View details for PubMedID 35498073

    View details for PubMedCentralID PMC9043919

  • Origins of Soft-Switching C-oss Losses in SiC Power MOSFETs and Diodes for Resonant Converter Applications IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS Tong, Z., Roig-Guitart, J., Neyer, T., Plummer, J. D., Rivas-Davila, J. M. 2021; 9 (4): 4082-4095
  • Decentralized Carrier Phase Shifting for Optimal Harmonic Minimization in Asymmetric Parallel-Connected Inverters IEEE TRANSACTIONS ON POWER ELECTRONICS Poon, J., Johnson, B., Dhople, S. V., Rivas-Davila, J. 2021; 36 (5): 5915–25
  • Small- and Large-Signal Dynamic Output Capacitance and Energy Loss in GaN-on-Si Power HEMTs IEEE TRANSACTIONS ON ELECTRON DEVICES Zhuang, J., Zulauf, G., Roig-Guitart, J., Plummer, J., Rivas, J. 2021; 68 (4): 1819–26
  • 6.78-MHz Wireless Power Transfer With Self-Resonant Coils at 95% DC-DC Efficiency IEEE TRANSACTIONS ON POWER ELECTRONICS Gu, L., Zulauf, G., Stein, A., Kyaw, P., Chen, T., Davila, J. 2021; 36 (3): 2456–60
  • A High Frequency Resonant Gate Driver for SiC MOSFETs Ye, Z., Tong, Z., Gu, L., Rivas-Davila, J., IEEE IEEE. 2021
  • Fixed-Frequency Control of Piezoelectric Resonator DC-DC Converters for Spurious Mode Avoidance IEEE OPEN JOURNAL OF POWER ELECTRONICS Stolt, E., Braun, W. D., Gu, L., Segovia-Fernandez, J., Chakraborty, S., Lu, R., Rivas-Davila, J. 2021; 2: 582-590
  • 1 kW MHz Wideband Class E Power Amplifier Xu, J., Tong, Z., Rivas-Davila, J., IEEE IEEE. 2021
  • Reverse Recovery Testing of Small-Signal Schottky Diodes Braun, W. D., Stolt, E. A., Gu, L., Rivas-Davila, J. M., IEEE IEEE. 2021: 5611-5615
  • Time and voltage domain load models for appliance-level grid edge simulation and control ELECTRIC POWER SYSTEMS RESEARCH Goldin, A., Buechler, E., Rajagopal, R., Rivas-Davila, J. 2021; 190
  • Push-Pull Class Phi(2) RF Power Amplifier IEEE TRANSACTIONS ON POWER ELECTRONICS Gu, L., Zulauf, G., Zhang, Z., Chakraborty, S., Rivas-Davila, J. 2020; 35 (10): 10515–31
  • Effect of Class 2 Ceramic Capacitor Variations on Switched-Capacitor and Resonant Switched-Capacitor Converters IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS Xu, J., Gu, L., Rivas-Davila, J. 2020; 8 (3): 2268–75
  • A Method to Eliminate Discrete Inductors in a Class-E Inverter Used in Wireless Power Transfer Applications IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS Surakitbovorn, K., Rivas-Davila, J. M. 2020; 8 (3): 2167–78
  • Design and Fabrication of Three-Dimensional Printed Air-Core Transformers for High-Frequency Power Applications IEEE TRANSACTIONS ON POWER ELECTRONICS Tong, Z., Braun, W. D., Rivas-Davila, J. 2020; 35 (8): 8472–89
  • Lightweight High Voltage Generator for Untethered Electroadhesive Perching of Micro Air Vehicles IEEE ROBOTICS AND AUTOMATION LETTERS Park, S., Drew, D. S., Follmer, S., Rivas-Davila, J. 2020; 5 (3): 4485–92
  • Cascode GaN/SiC: A Wide-Bandgap Heterogenous Power Device for High-Frequency Applications IEEE TRANSACTIONS ON POWER ELECTRONICS Xu, J., Gu, L., Ye, Z., Kargarrazi, S., Rivas-Davila, J. 2020; 35 (6): 6340–49
  • On the Optimization of a Class-E Power Amplifier With GaN HEMTs at Megahertz Operation IEEE TRANSACTIONS ON POWER ELECTRONICS Surakitbovorn, K., Rivas-Davila, J. M. 2020; 35 (4): 4009–23
  • Single-Turn Air-Core Coils for High-Frequency Inductive Wireless Power Transfer IEEE TRANSACTIONS ON POWER ELECTRONICS Zulauf, G., Rivas-Davila, J. M. 2020; 35 (3): 2917–32
  • A Hybrid Cockcroft-Walton/Dickson Multiplier for High Voltage Generation IEEE TRANSACTIONS ON POWER ELECTRONICS Park, S., Yang, J., Rivas-Davila, J. 2020; 35 (3): 2714–23
  • A Multiresonant Gate Driver for High-Frequency Resonant Converters IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS Gu, L., Tong, Z., Liang, W., Rivas-Davila, J. 2020; 67 (2): 1405–14
  • Demonstration of GaN Impact Ionization Avalanche Transit-Time (IMPATT) Diode Ji, D., Ercan, B., Zhuang, J., Gu, L., Rivas-Davila, J., Chowdhury, S., IEEE IEEE. 2020
  • The Impact of Multi-MHz Switching Frequencies on Dynamic On-Resistance in GaN-on-Si HEMTs IEEE OPEN JOURNAL OF POWER ELECTRONICS Zulauf, G., Guacci, M., Rivas-Davila, J. M., Kolar, J. W. 2020; 1: 210-215
  • Modular ON/OFF and Phase-Shifting for High-Speed Radio Frequency Power Modulation IEEE OPEN JOURNAL OF POWER ELECTRONICS Surakitbovorn, K., Rivas-Davila, J. M. 2020; 1: 393-406
  • Inductorless Soft Switching DC-DC Converter with an Optimized Piezoelectric Resonator Braun, W. D., Tong, Z., Rivas-Davila, J., IEEE IEEE. 2020: 2272–78
  • On the Techniques to Utilize SiC Power Devices in High- and Very High-Frequency Power Converters IEEE TRANSACTIONS ON POWER ELECTRONICS Tong, Z., Gu, L., Ye, Z., Surakitbovorn, K., Rivas-Davila, J. 2019; 34 (12): 12181–92
  • Output Capacitance Loss Characterization of Silicon Carbide Schottky Diodes IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS Tong, Z., Zulauf, G., Xu, J., Plummer, A. D., Rivas-Davila, J. 2019; 7 (2): 865–78
  • Implementing an Impedance Compression Network to Compensate for Misalignments in a Wireless Power Transfer System IEEE TRANSACTIONS ON POWER ELECTRONICS Choi, J., Xu, J., Makhoul, R., Davila, J. 2019; 34 (5): 4173–84
  • Duty Cycle and Frequency Modulations in Class-E DC-DC Converters for a Wide Range of Input and Output Voltages IEEE TRANSACTIONS ON POWER ELECTRONICS Park, S., Rivas-Davila, J. 2018; 33 (12): 10524–38
  • C-OSS Losses in 600 V GaN Power Semiconductors in Soft-Switched, High- and Very-High-Frequency Power Converters IEEE TRANSACTIONS ON POWER ELECTRONICS Zulauf, G., Park, S., Liang, W., Surakitbovorn, K., Rivas-Davila, J. 2018; 33 (12): 10748–63
  • A Wide-Input-Range High-Efficiency Step-Down Power Factor Correction Converter Using a Variable Frequency Multiplier Technique IEEE TRANSACTIONS ON POWER ELECTRONICS Gu, L., Liang, W., Praglin, M., Chakraborty, S., Rivas-Davila, J. 2018; 33 (11): 9399–9411
  • An Integrated RF Power Delivery and Plasma Micro-Thruster System for Nano-Satellites FRONTIERS IN PHYSICS Liang, W., Charles, C., Raymond, L., Stuchbery, A., Surakitbovorn, K., Gu, L., Boswell, R., Rivas-Davila, J. 2018; 6
  • Design of a Class-DE Rectifier with Shunt Inductance and Nonlinear Capacitance for High-Voltage Conversion IEEE TRANSACTIONS ON POWER ELECTRONICS Park, S., Rivas, J. M. 2018; 33 (3): 2282–94
  • Designing a 40.68 MHz power-combining resonant inverter with eGaN FETs for plasma generation Choi, J., Ooue, Y., Furukawa, N., Rivas, J., IEEE IEEE. 2018: 1322–27
  • Design of a GaN-Based Wireless Power Transfer System at 13.56 MHz to Replace Conventional Wired Connection in a Vehicle Surakitbovorn, K., Rivas-Davilla, J., IEEE IEEE. 2018: 3848–54
  • Substrate Bias Effect on E-Mode GaN-on-Si HEMT COSS Losses Zhuang, J., Zulauf, G., Rivas-Davila, J., IEEE IEEE. 2018: 130–33
  • Estimating the Reliability of Series-Connected Schottky Diodes for High-Frequency Rectification Park, S., Zulauf, G., Rivas-Davila, J., IEEE IEEE. 2018
  • Design of a 13.56 MHz dc-to-dc resonant converter using an impedance compression network to mitigate misalignments in a wireless power transfer system Choi, J., Xu, J., Makhoul, R., Rivas, J., IEEE IEEE. 2018
  • Design of a GaN-Based, Inductor-less, Wireless Power Transfer System at 40.68 MHz Surakitbovorn, K., Rivas-Davila, J., IEEE IEEE. 2018
  • High-Frequency Bidirectional Resonant Converter for High Conversion Ratio and Variable Load Operation Gu, L., Surakitbovorn, K., Zulauf, G., Chakraborty, S., Rivas-Davila, J., IEEE IEEE. 2018
  • Effect of Class 2 Ceramic Capacitance Variations on Switched Capacitor and Resonant Switched Capacitor Converters Xu, J., Gu, L., Hernandez, E., Rivas-Davila, J., IEEE IEEE. 2018
  • 60 V-to-35 kV Input-Parallel Output-Series DC-DC Converter Using Multi-Level Class-DE Rectifiers Park, S., Gu, L., Rivas-Davila, J., IEEE IEEE. 2018: 2235–41
  • COSS Measurements for Superjunction MOSFETs: Limitations and Opportunities IEEE Transactions on Electron Devices Zulauf, G. D., Roig-Guitart, J., Plummer, J. D., Rivas-Davila, J. M. 2018: 1-7

    View details for DOI 10.1109/TED.2018.2880952

  • Active Power Device Selection in High- and Very-High-Frequency Power Converters IEEE Transactions on Power Electronics Zulauf, G. D., Tong, Z., Plummer, J. D., Rivas-Davila, J. M. 2018: 1
  • Vacuum Testing of a Miniaturized Switch Mode Amplifier Powering an Electrothermal Plasma Micro-Thruster FRONTIERS IN PHYSICS Charles, C., Liang, W., Raymond, L., Rivas-Davila, J., Boswell, R. W. 2017; 5
  • Low-Mass RF Power Inverter for CubeSat Applications Using 3-D Printed Inductors IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS Liang, W., Raymond, L., Praglin, M., Biggs, D., Righetti, F., Cappelli, M., Holman, B., Davila, J. R. 2017; 5 (2): 880-890
  • Evaluation of GaN Transistor Losses at MHz Frequencies in Soft Switching Converters Surakitbovorn, K., Davila, J., IEEE IEEE. 2017
  • The "Smart Dim Fuse": A New Approach to Load Control as a Distributed Energy Resource Goldin, A., Rajagopal, R., Rivetta, C., Davila, J., IEEE IEEE. 2017
  • High-frequency, High-power Resonant Inverter with eGaN FET for Wireless Power Transfer IEEE Transactions on Power Electronics Choi, J., Tsukiyama, D., Tsuruda, Y., Rivas-Davila, J. M. 2017
  • Structurally supportive RF power inverter for a CubeSat electrothermal plasma micro-thruster with PCB inductors Liang, W., Raymond, L., Davila, J., Charles, C., Boswell, R., IEEE IEEE. 2017: 2141-2145
  • A Portable Electrostatic Precipitator to Reduce Respiratory Death in Rural Environments Talukder, S., Park, S., Rivas-Davila, J., IEEE IEEE. 2017
  • Isolated Resonant DC-DC Converters with a Loosely Coupled Transformer Park, S., Rivas-Davila, J., IEEE IEEE. 2017
  • Design of Very-High-Frequency Synchronous Resonant DC-DC Converter for Variable Load Operation Gu, L., Liang, W., Davila, J., IEEE IEEE. 2017: 3447–54
  • 3-D-Printed Air-Core Inductors for High-Frequency Power Converters IEEE TRANSACTIONS ON POWER ELECTRONICS Liang, W., Raymond, L., Rivas, J. 2016; 31 (1): 52-64
  • Low mass RF power inverter for cubesat plasma thruster using 3D printed inductors Liang, W., Raymond, L., Praglin, M., Biggs, D., Righetti, F., Cappelli, M., Holman, B., Davila, J., IEEE IEEE. 2016
  • Resonant Bi-Polar DC Pulse Power Supply for Electroporation Applications Raymond, L., Liang, W., Surakitbovourn, K., Davila, J., IEEE IEEE. 2016
  • 13.56 MHz High Density DC-DC Converter With PCB Inductors IEEE TRANSACTIONS ON POWER ELECTRONICS Liang, W., Glaser, J., Rivas, J. 2015; 30 (8): 4291-4301
  • 27.12 MHz Isolated High Voltage Gain Multi-Level Resonant DC-DC Converter Raymond, L., Liang, W., Surakitbovorn, K., Davila, J., IEEE IEEE. 2015: 5074-5080
  • High-Frequency Resonant SEPIC Converter With Wide Input and Output Voltage Ranges IEEE TRANSACTIONS ON POWER ELECTRONICS Hu, J., Sagneri, A. D., Rivas, J. M., Han, Y., Davis, S. M., Perreault, D. J. 2012; 27 (1): 189-200
  • A Very High Frequency DC-DC Converter Based on a Class Phi(2) Resonant Inverter IEEE TRANSACTIONS ON POWER ELECTRONICS Rivas, J. M., Leitermann, O., Han, Y., Perreault, D. J. 2011; 26 (10): 2980-2992
  • A Very High Frequency dc-dc Converter Based on a Class 2 Resonant Inverter IEEE Transactions on Power Electronics Rivas, J., M., Leitermann, O., Han, Y., Perreault, D., J. 2011; 26 (10): 2980-2992
  • A 500 W Push-pull Dc-dc Power Converter with a 30 MHz Switching Frequency Glaser, J. S., Rivas, J. M., IEEE IEEE. 2010: 654-661
  • Very-High-Frequency Resonant Boost Converters IEEE TRANSACTIONS ON POWER ELECTRONICS Pilawa-Podgurski, R. N., Sagneri, A. D., Rivas, J. M., Anderson, D. I., Perreault, D. J. 2009; 24 (5-6): 1654-1665
  • A high-bandwidth high-power inverter Sabate, J., Rivas, J. M., Szczesny, P., Stevanovic, L., IEEE IEEE. 2009: 5415-5423
  • A high-frequency resonant inverter topology with low-voltage stress IEEE TRANSACTIONS ON POWER ELECTRONICS Rivas, J. M., Han, Y., Leitermann, O., Sagneri, A. D., Perreault, D. J. 2008; 23 (4): 1759-1771
  • A High-Frequency Resonant Inverter Topology With Low-Voltage Stress IEEE Transactions on Power Electronics Rivas, J., M., Han, Y., Leitermann, O., Sagneri, A., D., Perreault, D., J. 2008; 23 (4): 1759-1771
  • High Frequency Resonant SEPIC Converter with Wide Input and Output Voltage Ranges Hu, J., Sagneri, A. D., Rivas, J. M., Han, Y., Davis, S. M., Perreault, D. J., IEEE IEEE. 2008: 1397-+
  • A Very High Frequency dc-dc Converter Based on a Class Phi(2) Resonant Inverter Rivas, J. M., Leitermann, O., Han, Y., Perreault, D. J., IEEE IEEE. 2008: 1657-1666
  • A high-frequency resonant inverter topology with low voltage stress Rivas, J. M., Han, Y., Leitermann, O., Sagneri, A., Perreault, D. J., IEEE IEEE, ELECTRON DEVICES SOC & RELIABILITY GROUP. 2007: 2705-2717
  • Resistance compression networks for radio-frequency power conversion IEEE TRANSACTIONS ON POWER ELECTRONICS Han, Y., Leitermann, O., Jackson, D. A., Rivas, J. M., Perreault, D. J. 2007; 22 (1): 41-53
  • Very high frequency resonant boost converters Pilawa-Podgurski, R. N., Sagneri, A. D., Rivas, J. M., Anderson, D. I., Perreault, D. J., IEEE IEEE, ELECTRON DEVICES SOC & RELIABILITY GROUP. 2007: 2718-2724
  • New architectures for radio-frequency DC-DC power conversion IEEE TRANSACTIONS ON POWER ELECTRONICS Rivas, J. M., Wahby, R. S., Shafran, J. S., Perreault, D. J. 2006; 21 (2): 380-393
  • Design considerations for very high frequency dc-dc converters Rivas, J. M., Jackson, D., Leitermann, O., Sagneri, A. D., Han, Y., Perreault, D. J., IEEE IEEE. 2006: 741-751
  • New Architectures for Radio-Frequency dc-dc Power Conversion IEEE Transactions on Power Electronics Rivas, J., M., Wahby, R., S., Shafran, J., S., Perreault, D., J. 2006; 21 (2): 380-393
  • Resistance compression networks for resonant power conversion Han, Y. H., Leitermann, O., Jackson, D. A., Rivas, J. A., Perreault, D. J., IEEE IEEE. 2005: 1282-1292
  • Performance improvement of alternators with switched-mode rectifiers Rivas, J., Perreault, D., Keim, T. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. 2004: 561-568
  • Performance improvement of alternators with Switched-Mode Rectifers IEEE Transactions on Energy Conversion. Rivas, J., Perreault, D., Keim, T. 2004; 19 (3): 561-568
  • New architectures for radio-frequency dc/dc power conversion Rivas, J. M., Wahby, R. S., Shafran, J. S., Perreault, D. J., ieee IEEE. 2004: 4074-4084
  • Performance improvement of alternators with switched-mode rectifiers Rivas, J. M., Perreault, D. J., Keim, T., IEEE, IEEE IEEE. 2003: 1984-1991