Stanford Advisors


All Publications


  • Harnessing a Feasible and Versatile ex vivo Calvarial Suture 2-D Culture System to Study Suture Biology. Frontiers in physiology Quarto, N., Menon, S., Griffin, M., Huber, J., Longaker, M. T. 2022; 13: 823661

    Abstract

    As a basic science, craniofacial research embraces multiple facets spanning from molecular regulation of craniofacial development, cell biology/signaling and ultimately translational craniofacial biology. Calvarial sutures coordinate development of the skull, and the premature fusion of one or more, leads to craniosynostosis. Animal models provide significant contributions toward craniofacial biology and clinical/surgical treatments of patients with craniofacial disorders. Studies employing mouse models are costly and time consuming for housing/breeding. Herein, we present the establishment of a calvarial suture explant 2-D culture method that has been proven to be a reliable system showing fidelity with the in vivo harvesting procedure to isolate high yields of skeletal stem/progenitor cells from small number of mice. Moreover, this method allows the opportunity to phenocopying models of craniosynostosis and in vitro tamoxifen-induction of ActincreERT2;R26Rainbow suture explants to trace clonal expansion. This versatile method tackles needs of large number of mice to perform calvarial suture research.

    View details for DOI 10.3389/fphys.2022.823661

    View details for PubMedID 35222087

  • Osteoskeletal Regenerative Ability of Exosomes Derived From Adipose-derived Stem Cells Upon Inhibition of Transforming Growth Factor-beta-signaling Huber, J. L., Menon, S., Longaker, M. T., Quarto, N. ELSEVIER SCIENCE INC. 2021: E194
  • The role of Wnt signaling in skin fibrosis. Medicinal research reviews Griffin, M. F., Huber, J., Evan, F. J., Quarto, N., Longaker, M. T. 2021

    Abstract

    Skin fibrosis is the excessive deposition of extracellular matrix in the dermis. Cutaneous fibrosis can occur following tissue injury, including burns, trauma, and surgery, resulting in scars that are disfiguring, limit movement and cause significant psychological distress for patients. Many molecular pathways have been implicated in the development of skin fibrosis, yet effective treatments to prevent or reverse scarring are unknown. The Wnt signaling pathways are known to play an important role in skin homeostasis, skin injury, and in the development of fibrotic skin diseases. This review provides a detailed overview of the role of the canonical Wnt signaling pathways in regulating skin scarring. We also discuss how Wnt signaling interacts with other known fibrotic molecular pathways to cause skin fibrosis. We further provide a summary of the different Wnt inhibitor types available for treating skin scarring. Understanding the role of the Wnt pathway in cutaneous fibrosis will accelerate the development of effective Wnt modulators for the treatment of skin fibrosis.

    View details for DOI 10.1002/med.21853

    View details for PubMedID 34431110

  • An Evolutionary Conserved Signaling Network Between Mouse and Human Underlies the Differential Osteoskeletal Potential of Frontal and Parietal Calvarial Bones. Frontiers in physiology Menon, S., Huber, J., Duldulao, C., Longaker, M. T., Quarto, N. 2021; 12: 747091

    Abstract

    The mammalian calvarial vault is an ancient and highly conserved structure among species, however, the mechanisms governing osteogenesis of the calvarial vault and how they might be conserved across mammalian species remain unclear. The aim of this study was to determine if regional differences in osteogenic potential of the calvarial vault, first described in mice, extend to humans. We derived human frontal and parietal osteoblasts from fetal calvarial tissue, demonstrating enhanced osteogenic potential both in vitro and in vivo of human frontal derived osteoblasts compared to parietal derived osteoblasts. Furthermore, we found shared differential signaling patterns in the canonical WNT, TGF-beta, BMP, and FGF pathways previously described in the mouse to govern these regional differences in osteogenic potential. Taken together, our findings unveil evolutionary conserved similarities both at functional and molecular level between the mouse and human calvarial bones, providing further support that studies employing mouse models, are suitable for translational studies to human.

    View details for DOI 10.3389/fphys.2021.747091

    View details for PubMedID 34744787

  • Exosomes - a tool for bone tissue engineering. Tissue engineering. Part B, Reviews Huber, J. L., Griffin, M., Longaker, M. T., Quarto, N. 2020

    Abstract

    Mesenchymal stem cells (MSC) have been repeatedly shown to be a valuable source for cell-based therapy in regenerative medicine, including bony tissue repair. However, engraftment at the injury site is poor. Recently, it has been suggested that MSCs and other cells act via a paracrine signaling mechanism. Exosomes are nanostructures that have been implicated in this process. They carry DNA, RNA, proteins and lipids and play an important role in cell-to-cell communication directly modulating their target cell at a transcriptional level. In a bone microenvironment, they have been shown to increase osteogenesis and osteogenic differentiation in vivo and in vitro. In the following review, we will discuss the most advanced and significant knowledge of biological functions of exosomes in bone regeneration and their clinical applications in osseous diseases.

    View details for DOI 10.1089/ten.TEB.2020.0246

    View details for PubMedID 33297857