All Publications


  • Investigation of the Structure of Atomically Dispersed NiNx Sites in Ni and N-Doped Carbon Electrocatalysts by 61Ni Mossbauer Spectroscopy and Simulations. Journal of the American Chemical Society Koshy, D. M., Hossain, M. D., Masuda, R., Yoda, Y., Gee, L. B., Abiose, K., Gong, H., Davis, R., Seto, M., Gallo, A., Hahn, C., Bajdich, M., Bao, Z., Jaramillo, T. F. 2022

    Abstract

    Ni and nitrogen-doped carbons are selective catalysts for CO2 reduction to CO (CO2R), but the hypothesized NiNx active sites are challenging to probe with traditional characterization methods. Here, we synthesize 61Ni-enriched model catalysts, termed 61NiPACN, in order to apply 61Ni Mossbauer spectroscopy using synchrotron radiation (61Ni-SR-MS) to characterize the structure of these atomically dispersed NiNx sites. First, we demonstrate that the CO2R results and standard characterization techniques (SEM, PXRD, XPS, XANES, EXAFS) point to the existence of dispersed Ni active sites. Then, 61Ni-SR-MS reveal significant internal magnetic fields of 5.4 T, which is characteristic of paramagnetic, high-spin Ni2+, in the 61NiPACN samples. Finally, theoretical calculations for a variety of Ni-Nx moieties confirm that high-spin Ni2+ is stable in non-planar, tetrahedrally distorted geometries, which results in calculated isotropic hyperfine coupling that is consistent with 61Ni-SR-MS measurements.

    View details for DOI 10.1021/jacs.2c09825

    View details for PubMedID 36394993

  • Chemical Modifications of Ag Catalyst Surfaces with Imidazolium Ionomers Modulate H2 Evolution Rates during Electrochemical CO2 Reduction. Journal of the American Chemical Society Koshy, D. M., Akhade, S. A., Shugar, A., Abiose, K., Shi, J., Liang, S., Oakdale, J. S., Weitzner, S. E., Varley, J. B., Duoss, E. B., Baker, S. E., Hahn, C., Bao, Z., Jaramillo, T. F. 2021

    Abstract

    Bridging polymer design with catalyst surface science is a promising direction for tuning and optimizing electrochemical reactors that could impact long-term goals in energy and sustainability. Particularly, the interaction between inorganic catalyst surfaces and organic-based ionomers provides an avenue to both steer reaction selectivity and promote activity. Here, we studied the role of imidazolium-based ionomers for electrocatalytic CO2 reduction to CO (CO2R) on Ag surfaces and found that they produce no effect on CO2R activity yet strongly promote the competing hydrogen evolution reaction (HER). By examining the dependence of HER and CO2R rates on concentrations of CO2 and HCO3-, we developed a kinetic model that attributes HER promotion to intrinsic promotion of HCO3- reduction by imidazolium ionomers. We also show that varying the ionomer structure by changing substituents on the imidazolium ring modulates the HER promotion. This ionomer-structure dependence was analyzed via Taft steric parameters and density functional theory calculations, which suggest that steric bulk from functionalities on the imidazolium ring reduces access of the ionomer to both HCO3- and the Ag surface, thus limiting the promotional effect. Our results help develop design rules for ionomer-catalyst interactions in CO2R and motivate further work into precisely uncovering the interplay between primary and secondary coordination in determining electrocatalytic behavior.

    View details for DOI 10.1021/jacs.1c06212

    View details for PubMedID 34472346

  • Understanding vapor-fed carbon dioxide reduction at the gas diffusion electrode and electrolyte interface Using flow-electrolyte systems Lee, D., Koshy, D., Abiose, K., Corral, D., Wang, L., Higgins, D., Hahn, C., Jaramillo, T. AMER CHEMICAL SOC. 2019