All Publications


  • p53 governs an AT1 differentiation programme in lung cancer suppression. Nature Kaiser, A. M., Gatto, A., Hanson, K. J., Zhao, R. L., Raj, N., Ozawa, M. G., Seoane, J. A., Bieging-Rolett, K. T., Wang, M., Li, I., Trope, W. L., Liou, D. Z., Shrager, J. B., Plevritis, S. K., Newman, A. M., Van Rechem, C., Attardi, L. D. 2023

    Abstract

    Lung cancer is the leading cause of cancer deaths worldwide1. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis1-4, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation. Using mice that express oncogenic Kras and null, wild-type or hypermorphic Trp53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. RNA sequencing and ATAC sequencing of LUAD cells uncovered a p53-induced AT1 differentiation programme during tumour suppression in vivo through direct DNA binding, chromatin remodelling and induction of genes characteristic of AT1 cells. Single-cell transcriptomics analyses revealed that during LUAD evolution, p53 promotes AT1 differentiation through action in a transitional cell state analogous to a transient intermediary seen during AT2-to-AT1 cell differentiation in alveolar injury repair. Notably, p53 inactivation results in the inappropriate persistence of these transitional cancer cells accompanied by upregulated growth signalling and divergence from lung lineage identity, characteristics associated with LUAD progression. Analysis of Trp53 wild-type and Trp53-null mice showed that p53 also directs alveolar regeneration after injury by regulating AT2 cell self-renewal and promoting transitional cell differentiation into AT1 cells. Collectively, these findings illuminate mechanisms of p53-mediated LUAD suppression, in which p53 governs alveolar differentiation, and suggest that tumour suppression reflects a fundamental role of p53 in orchestrating tissue repair after injury.

    View details for DOI 10.1038/s41586-023-06253-8

    View details for PubMedID 37468633

    View details for PubMedCentralID 4231481

  • Multifaceted role for p53 in pancreatic cancer suppression. Proceedings of the National Academy of Sciences of the United States of America Mello, S. S., Flowers, B. M., Mazur, P. K., Lee, J. J., Müller, F., Denny, S. K., Ferreira, S., Hanson, K., Kim, S. K., Greenleaf, W. J., Wood, L. D., Attardi, L. D. 2023; 120 (10): e2211937120

    Abstract

    The vast majority of human pancreatic ductal adenocarcinomas (PDACs) harbor TP53 mutations, underscoring p53's critical role in PDAC suppression. PDAC can arise when pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), giving rise to premalignant pancreatic intraepithelial neoplasias (PanINs), which finally progress to PDAC. The occurrence of TP53 mutations in late-stage PanINs has led to the idea that p53 acts to suppress malignant transformation of PanINs to PDAC. However, the cellular basis for p53 action during PDAC development has not been explored in detail. Here, we leverage a hyperactive p53 variant-p5353,54-which we previously showed is a more robust PDAC suppressor than wild-type p53, to elucidate how p53 acts at the cellular level to dampen PDAC development. Using both inflammation-induced and KRASG12D-driven PDAC models, we find that p5353,54 both limits ADM accumulation and suppresses PanIN cell proliferation and does so more effectively than wild-type p53. Moreover, p5353,54 suppresses KRAS signaling in PanINs and limits effects on the extracellular matrix (ECM) remodeling. While p5353,54 has highlighted these functions, we find that pancreata in wild-type p53 mice similarly show less ADM, as well as reduced PanIN cell proliferation, KRAS signaling, and ECM remodeling relative to Trp53-null mice. We find further that p53 enhances chromatin accessibility at sites controlled by acinar cell identity transcription factors. These findings reveal that p53 acts at multiple stages to suppress PDAC, both by limiting metaplastic transformation of acini and by dampening KRAS signaling in PanINs, thus providing key new understanding of p53 function in PDAC.

    View details for DOI 10.1073/pnas.2211937120

    View details for PubMedID 36848578

  • Understanding the Arf-p53 axis in PDAC suppression Attardi, L. D., Flowers, B. M., Hanson, K., Mulligan, A. S., Ferreira, S., Bhattacharyya, S., Vogel, H., Wood, L. D., Sherman, M. AMER ASSOC CANCER RESEARCH. 2022: 33-34
  • Characterizing acinar cell and ductal cell derived PDACs in mouse models Ferreira, S., Flowers, B. M., Hanson, K. J., Gatto, A., Bhattacharyya, S., Sherman, M. H., Attardi, L. D. AMER ASSOC CANCER RESEARCH. 2022: 40-41
  • The role of p53 in the development of pancreatic ductal adenocarcinoma. Hanson, K. J., Flowers, B. M., Hughes, N., Vogel, H., Cong, L., Attardi, L. D. AMER ASSOC CANCER RESEARCH. 2021: 58
  • Cell of Origin Influences Pancreatic Cancer Subtype CANCER DISCOVERY Flowers, B. M., Xu, H., Mulligan, A. S., Hanson, K. J., Seoane, J. A., Vogel, H., Curtis, C., Wood, L. D., Attardi, L. D. 2021; 11 (3): 660–77
  • Cell of Origin Influences Pancreatic Cancer Subtype. Cancer discovery Flowers, B. M., Xu, H., Mulligan, A. S., Hanson, K. J., Seoane, J. A., Vogel, H., Curtis, C., Wood, L. D., Attardi, L. D. 2021; 11 (3): 660-677

    Abstract

    Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a 5-year survival rate of approximately 9%. An improved understanding of PDAC initiation and progression is paramount for discovering strategies to better detect and combat this disease. Although transcriptomic analyses have uncovered distinct molecular subtypes of human PDAC, the factors that influence subtype development remain unclear. Here, we interrogate the impact of cell of origin and different Trp53 alleles on tumor evolution, using a panel of tractable genetically engineered mouse models. Oncogenic KRAS expression, coupled with Trp53 deletion or point mutation, drives PDAC from both acinar and ductal cells. Gene-expression analysis reveals further that ductal cell-derived and acinar cell-derived tumor signatures are enriched in basal-like and classical subtypes of human PDAC, respectively. These findings highlight cell of origin as one factor that influences PDAC molecular subtypes and provide insight into the fundamental impact that the very earliest events in carcinogenesis can have on cancer evolution. SIGNIFICANCE: Although human PDAC has been classified into different molecular subtypes, the etiology of these distinct subtypes remains unclear. Using mouse genetics, we reveal that cell of origin is an important determinant of PDAC molecular subtype. Deciphering the biology underlying pancreatic cancer subtypes may reveal meaningful distinctions that could improve clinical intervention.This article is highlighted in the In This Issue feature, p. 521.

    View details for DOI 10.1158/2159-8290.CD-20-0633

    View details for PubMedID 34009137

  • Deconstructing the origins of PDAC development. Flowers, B., Xu, H., Hanson, K., Curtis, C., Vogel, H., Wood, L., Attardi., L. D. AMER ASSOC CANCER RESEARCH. 2020: 19
  • Deciphering the origins of PDAC development Flowers, B., Xu, H., Hanson, K., Curtis, C., Vogel, H., Wood, L. D., Attardi, L. D. AMER ASSOC CANCER RESEARCH. 2019
  • Elucidating the role of p53 in the cellular origins of pancreatic cancer development Flowers, B. M., Xu, H., Hanson, K., Curtis, C., Vogel, H., Wood, L. D., Attardi, L. D. AMER ASSOC CANCER RESEARCH. 2019