Bio


Kevin Arrigo received his B.S in Natural Resources from the University of Michigan in 1983. After working for the Michigan Department of Natural Resources, he attended the University of Southern California where he earned his Ph.D. in Biological Sciences in 1992. He went on to a postdoctoral position at the NASA Goddard Space Flight Center and became a civil servant there in 1995. In 1999, he joined the Stanford University faculty as an Assistant Professor in the Department of Geophysics, where he stayed until 2007 when he joined the Department of Environmental Earth System Science. Arrigo served as director of the interdisciplinary Graduate Program in Earth, Energy, and Environmental Sciences from 2005-2013. In 2012, he became co-director of the Earth Systems Program within the School of Earth Sciences. He has served on a number of university committees, including the Committee on Academic Computing and Information Services (2010-2012), Committee for the Review of Undergraduate Majors (2010-2013), and the Bing Overseas Studies Faculty Oversight Committee (2011-present). As a biological oceanographer, his principal interest has been in the role marine microalgae play in modulating the cycling of carbon and nitrogen, with particular emphasis on the scales of temporal and spatial variability of biological productivity in polar oceans. This knowledge is essential to understanding how anthropogenic and atmospheric forcing controls the biogenic flux of carbon dioxide into the oceans, and ultimately, to the sediments. His research is highly interdisciplinary and incorporates three fundamental approaches, (1) satellite remote sensing, (2) ecophysiological modeling, and (3) laboratory and field studies. By combining these techniques, it is possible to address many complex aspects of ocean biogeochemistry at spatial and temporal scales that would not be possible using a single approach

Academic Appointments


Administrative Appointments


  • Professor, Department of Environmental Earth System Science, Stanford University (2009 - Present)
  • Associate Professor, Department of Environmental Earth System Science, Stanford University (2007 - 2009)
  • Associate Chair, Department of Environmental Earth System Science, Stanford University (2007 - Present)
  • Director, Graduate Program in Earth, Energy, and Environmental Sciences, School of Earth Sciences, Stanford University (2005 - 2010)
  • Associate Professor of Geophysics, Stanford University (2004 - 2007)
  • Assistant Professor of Geophysics, Stanford University (1999 - 2004)
  • Oceanographer, NASA Goddard Space Flight Center (1995 - 1999)
  • Adjunct Assistant Professor Dept. of Meteorology, University of Maryland (1994 - 1999)
  • Assistant Research Professor Dept. of Meteorology, University of Maryland (1994 - 1995)
  • Adjunct Assistant Professor MEES, Horn Point Environmental Laboratory, University of Maryland (1993 - 1999)
  • Resident Research Assistant, NASA Goddard Space Flight Center (1992 - 1994)
  • Research Assistant, Department of Biological Sciences, University of Southern California (1987 - 1992)
  • Teaching Assistant, Department of Biological Sciences, University of Southern California (1986 - 1991)
  • Fisheries Biologist, Department of Natural Resources, State of Michigan (1984 - 1986)

Honors & Awards


  • Donald & Donald M. Steel Professor in Earth Sciences, Stanford University (2013-present)
  • Group Achievement Award for ICESCAPE, NASA (2012)
  • Gerhard Caspar University Fellow in Undergraduate Education, Stanford University (2011-2016)
  • Aldo Leopold Leadership Fellowship, Woods Institute for the Environment, Stanford University (2009)
  • School of Earth Sciences Excellence in Teaching Award, Stanford University (2008)
  • Chair, Gordon Research Conference on Polar Marine Science, Gordon Research Conference (2007)
  • Frederick E. Terman Fellowship Award, School of Earth Sciences, Stanford University (1999-2002)
  • Special Act Award, NASA Goddard Space Flight Center (1997)
  • Quality Increase Award, NASA Goddard Space Flight Center (1996)
  • Special Act Award, NASA Goddard Space Flight Center (1995)
  • Performance Award, NASA Goddard Space Flight Center (1995)
  • Peer Award for Outstanding Publication, NASA GSFC, Laboratory for Hydrospheric Processes (1995)
  • Global Change Distinguished Postdoctoral Fellowship, United States Department of Energy (1992 - 1994)
  • ARCS Fellowship, University of Southern California (1990 - 1992)
  • Antarctic Service Medal, National Science Foundation (1988 - 1989)
  • Outstanding Teaching Assistant Award, University of Southern California (1987 - 1991)
  • Cum Laude, University of Michigan (1983)
  • Competitive Scholarship, State of Michigan (1980 - 1983)
  • Competitive Scholarship, Oakland University (1977 - 1979)

Boards, Advisory Committees, Professional Organizations


  • Director, Earth Systems Program, Stanford University (2015 - Present)
  • Associate Editor, Journal of Geophysical Research - Biogeochemistry (2012 - Present)
  • Aldo Leopold Leadership Program Committee, Stanford University (2011 - Present)
  • Bing Overseas Studies Program, Faculty Oversight Committee, Stanford University (2011 - Present)
  • Advisory Board, Alliance for Climate Education (2010 - Present)
  • Board of Governors, Alternate, Ocean Leadership (2008 - Present)
  • Center for Ocean Solutions Early Career Fellowship, Selection Committee, Stanford University (2008 - Present)
  • Review Editor, Aquatic Biology (2008 - Present)
  • Associate Chair, Department of Environmental Earth System Science, Stanford University (2007 - Present)
  • Faculty Liaison, The Australia Program, Overseas Studies Program, Stanford University (2002 - Present)
  • Co-Director, Earth Systems Program, School of Earth Sciences, Stanford University (2012 - 2015)
  • Committee for the Review of Undergraduate majors (C-RUM), Stanford University (2010 - 2013)
  • Faculty of 1000, Contributing Member, Ecosystem Ecology (2010 - 2013)
  • Committee on Academic Computing and Information Services (C-ACIS), Stanford University (2010 - 2011)
  • E-IPER Reauthorization Review Committee, Stanford University (2010 - 2010)
  • Environmental Ventures Project, Woods Institute for the Environment, Review Committee, Stanford University (2009 - 2012)
  • Invited Speaker, Recent changes in Arctic Ocean Primary Production. Gordon Research Conference on Polar Marine Science, Lucca (Barga), Italy, March 15-20, Gordon Research Conference (2009 - 2009)
  • Invited Speaker, University of California Santa Cruz, 19 January 2009, University of California Santa Cruz (2009 - 2009)
  • Invited Speaker, Using remote sensing to monitor oceans and ice. Southern Ocean Sentinel program, Hobart, Tasmania (Australia), April 20-25, Southern Ocean Sentinel program (2009 - 2009)
  • Earth Systems Undergraduate Curriculum Committee, Stanford University (2008 - 2012)
  • Library Committee, School of Earth Sciences, Stanford University (2008 - 2012)
  • Advisory Committee for Educational Outreach, School of Earth Sciences, Stanford University (2008 - 2011)
  • Branner Library Space Committee, School of Earth Sciences, Stanford University (2008 - 2010)
  • Chair, School of Earth Sciences Faculty Search Committee, Marine Chemist/Geochemist, Stanford University (2008 - 2010)
  • School of Earth Sciences Faculty Search Committee, Climate scientist, Stanford University (2008 - 2009)
  • Invited Speaker, Changes in Arctic Ocean primary production, 1998-2008, Arctic Change 2008, Quebec City, Quebec, Canada, December 9-12, Arctic Change 2008 (2008 - 2008)
  • Oceans Working Group, Canadian Institute for Advanced Research (CIFAR) (2007 - 2009)
  • Chair, Gordon Research Conference on Polar Marine Science, Ventura, CA, March 25-30, Gordon Research Conference (2007 - 2007)
  • Invited Speaker, C.B. van Niel Lecture, Hopkins Marine Station, Stanford University, April 6, Hopkins Marine Station, Stanford University (2007 - 2007)
  • Invited Speaker, Duke University, 12 January, Duke University (2007 - 2007)
  • Invited Speaker, Nicholas School Marine Laboratory, Duke University, 1 May, Duke University (2007 - 2007)
  • Editorial Board, Annual Reviews of Marine Science (2006 - 2012)
  • Chair, School of Earth Sciences Faculty Search Committee, Physical Oceanographer, Stanford University (2006 - 2007)
  • Committee for School of Earth Sciences Reorganization, Stanford University (2006 - 2007)
  • Invited Participant, SCOR Workshop on Anthropogenic Nitrogen Impacts on the Open Ocean, Norwich, UK, 16-20 November, Scientific Committee on Oceanic Research (2006 - 2006)
  • Working Group for Carbon Research, IMBER/SOLAS (2005 - 2011)
  • Director, Graduate Program in Earth, Energy, and Environmental Sciences, Stanford University (2005 - 2010)
  • CEES Faculty Advisory Board, Stanford University (2005 - 2009)
  • Understanding Change Panel (UCP), Study of Environmental Arctic Change (SEARCH) (2005 - 2008)
  • School of Earth Sciences Faculty Search Committee, Climate scientist, Stanford University (2005 - 2007)
  • Appointment Committee, Suki Hoagland-Senior Lecturer in IPER, Stanford University (2005 - 2005)
  • Geological and Environmental Sciences Faculty Search Committee, Paleobiology, Stanford University (2005 - 2005)
  • Invited Speaker, Oregon State University, 7 December, Oregon State University (2005 - 2005)
  • Vice-Chair, Gordon Research Conference on Polar Marine Science, Gordon Research Conference (2005 - 2005)
  • School of Earth Sciences Council, Stanford University (2004 - 2010)
  • Board of Governors, Alternate, Ocean Leadership (2004 - 2008)
  • Chair, School of Earth Sciences Ph.D/M.S. Academic Programs Committee, Stanford University (2004 - 2005)
  • Geophysics Faculty Search Committee, Computational Global Seismology, Stanford University (2004 - 2005)
  • Invited Speaker, Oregon State University, December 2, Oregon State University (2004 - 2004)
  • Member, The Bering Sea Ecological Study (BEST) Committee, National Science Foundation (2003 - 2006)
  • Carnegie Institute of Washington, Global Ecology/Oceanographer Search Committee, Stanford University (2003 - 2005)
  • Committee on A Science Plan for the North Pacific Research Board, National Research Council of the National Academies (2003 - 2005)
  • Member, Committee on A Science Plan for the North Pacific Research Board, National Research Council of the National Academies (2003 - 2005)
  • Planning committee for the Bering Sea Ecological Study (BEST), National Science Foundation (2003 - 2005)
  • Geophysics Faculty Pre-Search Committee, Stanford University (2003 - 2004)
  • School of Earth Sciences Academic Programs Committee, Stanford University (2003 - 2004)
  • Invited Speaker, Aquatic Sciences Meeting, Salt Lake City, American Society of Limnology and Oceanography (2003 - 2003)
  • Invited Speaker, EGS-AGU-EUG Joint Assembly, Nice, France, EGS-AGU-EUG (2003 - 2003)
  • Invited Speaker, Gordon Research Conference on Polar Marine Science, Ventura, California, Gordon Research Conference (2003 - 2003)
  • Invited Speaker, The Bering Sea Ecological Study (BEST) Workshop, Seattle, Washington, The Bering Sea Ecological Study (BEST) (2003 - 2003)
  • Invited Speaker, The Royal Society (The Role of the Southern Ocean in Global Processes: An Earth System Science Approach), London, The Royal Society (2003 - 2003)
  • Invited Speaker, University of Southern California, Los Angeles, CA, January 28, University of Southern California (2003 - 2003)
  • Earth Systems Executive Committee, Stanford University (2002 - 2012)
  • Academic Advisor for Sophomores, Stanford University (2002 - 2009)
  • Editor, Oceanography of the Ross Sea, Antarctic Science (2002 - 2002)
  • Invited Speaker, Hopkins Marine Station, Stanford University, January 25, Hopkins Marine Station, Stanford University (2002 - 2002)
  • Invited Speaker, United States Geological Survey, Menlo Park, CA, December, United States Geological Survey (2002 - 2002)
  • Invited Speaker, University of California, Irvine, April 19, University of California, Irvine (2002 - 2002)
  • Invited Speaker, University of California, Santa Barbara, March 12, University of California, Santa Barbara (2002 - 2002)
  • Academic Advisor for Freshmen, Stanford University (2001 - 2008)
  • Interdisciplinary Graduate Program In Environment and Resource (IPER) Advisory Council, Stanford University (2001 - 2008)
  • Stanford's Environmental Initiative, Stanford University (2001 - 2004)
  • Invited Speaker, International Polynya Symposium 2001, Polynyas in Changing Polar Seas, International Polynya Symposium 2001 (2001 - 2001)
  • Invited Speaker, Romberg Tiburon Center, San Francisco State University (2001 - 2001)
  • Panel on Biocomplexity in the Environment/Instrumentation Development for Environmental Activities, National Science Foundation (2001 - 2001)
  • Chair, Department of Geophysics Teaching & Technology Committee, Stanford University (2000 - 2007)
  • Ad-hoc Committee for Interdisciplinary Environmental Studies, Stanford University (2000 - 2005)
  • Curriculum Committee, Geophysics Dept., Stanford University (2000 - 2004)
  • Strategic Planning Committee, Geophysics Dept., Stanford University (2000 - 2004)
  • Technology and Teaching Committee, Geophysics Dept., Stanford University (2000 - 2004)
  • Faculty/Staff Development Committee, Geophysics Dept., Stanford University (2000 - 2003)
  • Member, AGU Committee on Statues and Bylaws, American Geophysical Union (2000 - 2003)
  • Invited speaker, UC Santa Cruz (2000 - 2000)
  • Member, DOE Panel on Ocean Carbon Sequentration Research, Department of Energy (2000 - 2000)
  • Invited speaker, Gordon Research Conference (1998 - 1998)
  • Council of Fellows, Joint Center for Earth System Science, Dept. of Meteorology, University of Maryland (1997 - 1997)
  • Editor, Vol. 73, Antarctic Research Series (1997 - 1997)
  • Invited speaker, NASA Goddard Space Flight Center (1997 - 1997)
  • NASA Earth Science Vision team, NASA (1997 - 1997)
  • Visiting Senior Scientist Search Committee, Laboratory for Hydrospheric Processes, NASA (1997 - 1997)

Professional Education


  • Ph.D., University of Southern California, Biology (1992)
  • B.S., University of Michigan, Natural Resources (1983)

Current Research and Scholarly Interests


Research
My students and I use a combination of laboratory and field studies, remote sensing, and computer modeling techniques to understand phytoplankton dynamics in regions ranging from the Southern Ocean to the Red Sea. In particular, we are interested in the role these organisms play in regulating the uptake of atmospheric carbon dioxide by the ocean, as well as in how they help structure marine ecosystems. We work with colleagues in fields as diverse as molecular biology, glaciology, and physical oceanography to develop a comprehensive understanding of how these ecosystems operate and how they may respond to environmental changes--past, present, and future.

Teaching
I teach courses for graduate and undergraduate students on ocean biogeochemistry, global environmental change, satellite remote sensing, numerical ecosystem modeling, and biological oceanography. I also co-teach a field course on coral reef ecology as part of Stanford's Overseas Studies Program in Australia.

Professional Activities
Chair, Gordon Research Conference on Polar Marine Science, 2007; Editorial Board, Annual Reviews, 2006-present; IMBER/SOLAS Working Group for Carbon Research, 2005-present; Board of Governors, Alternate, Joint Oceanographic Institutions, 2004-present; Vice-Chair, Gordon Research Conference on Polar Marine Science, 2005; Member, Bering Sea Ecological Study (BEST) Committee, National Science Foundation, March 2003-present; Member, Committee on A Science Plan for the North Pacific Research Board, National Research Council of the National Academies, 2003-2005; Editor, Ross Sea Oceanography, Antarctic Science, Volume 15, 2003

Projects


  • Research Project, Stanford University

    Location

    Arctic Ocean

  • Research Project, Stanford University

    Location

    Antarctica

2014-15 Courses


Postdoctoral Advisees


Journal Articles


  • Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota GLOBAL CHANGE BIOLOGY Constable, A. J., Melbourne-Thomas, J., Corney, S. P., Arrigo, K. R., Barbraud, C., Barnes, D. K., Bindoff, N. L., Boyd, P. W., Brandt, A., Costa, D. P., Davidson, A. T., Ducklow, H. W., Emmerson, L., Fukuchi, M., Gutt, J., Hindell, M. A., Hofmann, E. E., Hosie, G. W., Iida, T., Jacob, S., Johnston, N. M., Kawaguchi, S., Kokubun, N., Koubbi, P., Lea, M., Makhado, A., Massom, R. A., Meiners, K., Meredith, M. P., Murphy, E. J., Nicol, S., Reid, K., Richerson, K., Riddle, M. J., Rintoul, S. R., Smith, W. O., Southwell, C., Stark, J. S., Sumner, M., Swadling, K. M., Takahashi, K. T., Trathan, P. N., Welsford, D. C., Weimerskirch, H., Westwood, K. J., Wienecke, B. C., Wolf-Gladrow, D., Wright, S. W., Xavier, J. C., Ziegler, P. 2014; 20 (10): 3004-3025

    View details for DOI 10.1111/gcb.12623

    View details for Web of Science ID 000342168500002

  • Role of shelfbreak upwelling in the formation of a massive under-ice bloom in the Chukchi Sea DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Spall, M. A., Pickart, R. S., Brugler, E. T., Moore, G. W., Thomas, L., Arrigo, K. R. 2014; 105: 17-29
  • Impacts of sea ice retreat, thinning, and melt-pond proliferation on the summer phytoplankton bloom in the Chukchi Sea, Arctic Ocean DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Palmer, M. A., Saenz, B. T., Arrigo, K. R. 2014; 105: 85-104
  • Evidence of under-ice phytoplankton blooms in the Chukchi Sea from 1998 to 2012 DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Lowry, K. E., Van Dijken, G. L., Arrigo, K. R. 2014; 105: 105-117
  • Phytoplankton blooms beneath the sea ice in the Chukchi sea DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bates, N. R., Benitez-Nelson, C. R., Brownlee, E., Frey, K. E., Laney, S. R., Mathis, J., Matsuoka, A., Mitchell, B. G., Moore, G. W., Reynolds, R. A., Sosik, H. M., Swift, J. H. 2014; 105: 1-16
  • Response of marine bacterioplankton to a massive under-ice phytoplankton bloom in the Chukchi Sea (Western Arctic Ocean) DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Ortega-Retuerta, E., Fichot, C. G., Arrigo, K. R., van Dijken, G. L., Joux, E. 2014; 105: 74-84
  • Annual primary production in Antarctic sea ice during 2005-2006 from a sea ice state estimate JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Saenz, B. T., Arrigo, K. R. 2014; 119 (6): 3645-3678
  • Twentieth century sea-ice trends in the Ross Sea from a high-resolution, coastal ice-core record GEOPHYSICAL RESEARCH LETTERS Sinclair, K. E., Bertler, N. A., Bowen, M. M., Arrigo, K. R. 2014; 41 (10): 3510-3516
  • Productivity in the Barents Sea - Response to Recent Climate Variability PLOS ONE Dalpadado, P., Arrigo, K. R., Hjollo, S. S., Rey, F., Ingvaldsen, R. B., Sperfeld, E., Van Dijken, G. L., Stige, L. C., Olsen, A., Ottersen, G. 2014; 9 (5)

    Abstract

    The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region.

    View details for DOI 10.1371/journal.pone.0095273

    View details for Web of Science ID 000335510600031

    View details for PubMedID 24788513

  • Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae MOLECULAR PHYLOGENETICS AND EVOLUTION Smith, D. R., Arrigo, K. R., Alderkamp, A., Allen, A. E. 2014; 71: 36-40

    Abstract

    We are just beginning to understand how mutation rates differ among mitochondrial, plastid, and nuclear genomes. In most seed plants the mitochondrial mutation rate is estimated to be lower than those of the plastid and nucleus, whereas in the red alga Porphyra the opposite is true, and in certain green algae all three genomes appear to have similar rates of mutation. Relative rate statistics of organelle vs nuclear genes, however, are lacking for lineages that acquired their plastids through secondary endosymbiosis, but recent organelle DNA analyses suggest that they may differ drastically from what is observed in lineages with primary plastids, such as green plants and red algae. Here, by measuring synonymous nucleotide substitutions, we approximate the relative mutation rates within the haptophyte genus Phaeocystis, which has a red-algal-derived, secondary plastid. Synonymous-site divergence data indicate that for Phaeocystis antarctica and P. globosa the mitochondrial mutation rate is 10 and 3 times that of the plastid and nucleus, respectively. This differs drastically from relative rate estimates for primary-plastid-bearing lineages and presents a much more dynamic view of organelle vs nuclear mutation rates across the eukaryotic domain.

    View details for DOI 10.1016/j.ympev.2013.10.018

    View details for Web of Science ID 000330086000003

    View details for PubMedID 24216019

  • Sea ice ecosystems Annual Review of Marine Science Arrigo, K. R. 2014
  • The oceanography and ecology of the ross sea. Annual review of marine science Smith, W. O., Ainley, D. G., Arrigo, K. R., Dinniman, M. S. 2014; 6: 469-487

    Abstract

    The continental shelf of the Ross Sea exhibits substantial variations in physical forcing, ice cover, and biological processes on a variety of time and space scales. Its circulation is characterized by advective inputs from the east and exchanges with off-shelf regions via the troughs along the northern portions. Phytoplankton biomass is greater there than anywhere else in the Antarctic, although nitrate is rarely reduced to levels below 10 μmol L(-1). Overall growth is regulated by irradiance (via ice at the surface and by the depths of the mixed layers) and iron concentrations. Apex predators reach exceptional abundances, and the world's largest colonies of Adélie and emperor penguins are found there. Krill are represented by two species (Euphausia superba near the shelf break and Euphausia crystallorophias throughout the continental shelf region). Equally important and poorly known is the Antarctic silverfish (Pleuragramma antarcticum), which is also consumed by most upper-trophic-level predators. Future changes in the Ross Sea environment will have profound and unpredictable effects on the food web.

    View details for DOI 10.1146/annurev-marine-010213-135114

    View details for PubMedID 23987914

  • (submitted) Primary Production in Antarctic Sea Ice from a Sea Ice State Estimate Journal of Geophysical Research Saenz, B. T., Arrigo, K. R. 2014
  • (submitted) Iron supply and demand in an antarctic shelf ecosystem Nature Geosciences McGillicuddy, D. J., Sedwick, P. N., Dinniman, M. S., Arrigo, K. R., Bibby, T. S., Greenan, B. E., Hofmann, E. E., Klinck, J. M., Marsay, C. M., Smith Jr., W. O., Sohst, B. M., van Dijken, G. L. 2014
  • The oceanography and ecology of the Ross Sea Annual Reviews of Marine Science Smith, Jr., W. O., Ainley, D. G., Arrigo, K. R., Dinniman, M. S. 2014; 6 (10): 1-19
  • (submitted) Impacts of low phytoplankton NO3:PO4 utilization ratios over the Chukchi Shelf, Arctic Ocean Deep Sea Research, Part II Mills, M. M., Brown, Z. W., Lowry, K. E., van Dijken, G. L., Becker, S., Pal, S., Benitez-Nelson, C., Downer, M. M., Strong, A. L., Swift, J. H., Pickart, R. S., Arrigo, K. R. 2014
  • Light and nutrient control of photosynthesis in natural phytoplankton populations from the Chukchi and Beaufort seas, Arctic Ocean LIMNOLOGY AND OCEANOGRAPHY Palmer, M. A., Van Dijken, G. L., Mitchell, B. G., Seegers, B. J., Lowry, K. E., Mills, M. M., Arrigo, K. R. 2013; 58 (6): 2185-2205
  • Processes and patterns of oceanic nutrient limitation NATURE GEOSCIENCE Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Maranon, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., Ulloa, O. 2013; 6 (9): 701-710

    View details for DOI 10.1038/NGEO1765

    View details for Web of Science ID 000323717500011

  • Long-term trends of upwelling and impacts on primary productivity in the Alaskan Beaufort Sea DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS Pickart, R. S., Schulze, L. M., Moore, G. W., Charette, M. A., Arrigo, K. R., van Dijken, G., Danielson, S. L. 2013; 79: 106-121
  • Sea ice impacts on spring bloom dynamics and net primary production in the Eastern Bering Sea JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Brown, Z. W., Arrigo, K. R. 2013; 118 (1): 43-62
  • Light and nutrient control of photosynthesis in natural phytoplankton populations from the Chukchi and Beaufort Seas, Arctic Ocean LIMINOLOGY AND OCEANOGRAPHY Palmer, M. A., van Dijken, G. L., Mitchell, B. G., Seegers, B. J., Lowry, K. E., Mills, M. M., Arrigo, K. R. 2013
  • Insignificant buffering capacity of Antarctic shelf carbonates GLOBAL BIOGEOCHEMICAL CYCLES Hauck, J., Arrigo, K. R., Hoppema, M., van Dijken, G. L., Voelker, C., Wolf-Gladrow, D. A. 2013; 27 (1): 11-20
  • Photoacclimation and non-photochemical quenching under in situ irradiance in natural phytoplankton assemblages from the Amundsen Sea, Antarctica MARINE ECOLOGY PROGRESS SERIES Alderkamp, A., Mills, M. M., Van Dijken, G. L., Arrigo, K. R. 2013; 475: 15-?

    View details for DOI 10.3354/meps10097

    View details for Web of Science ID 000314935000002

  • Inorganic C utilization and C isotope fractionation by pelagic and sea ice algal assemblages along the Antarctic continental shelf MARINE ECOLOGY PROGRESS SERIES Tortell, P. D., Mills, M. M., Payne, C. D., Maldonado, M. T., Chierici, M., Fransson, A., Alderkamp, A., Arrigo, K. R. 2013; 483: 47-66

    View details for DOI 10.3354/meps10279

    View details for Web of Science ID 000319680700004

  • Chlorophyll a in Antarctic sea ice from historical ice core data GEOPHYSICAL RESEARCH LETTERS Meiners, K. M., Vancoppenolle, M., Thanassekos, S., Dieckmann, G. S., Thomas, D. N., Tison, J., Arrigo, K. R., Garrison, D. L., McMinn, A., Lannuzel, D., Van der Merwe, P., Swadling, K. M., Smith, W. O., MELNIKOV, I., Raymond, B. 2012; 39
  • Patterns and controlling factors of species diversity in the Arctic Ocean JOURNAL OF BIOGEOGRAPHY Yasuhara, M., Hunt, G., van Dijken, G., Arrigo, K. R., Cronin, T. M., Wollenburg, J. E. 2012; 39 (11): 2081-2088
  • Key role of organic complexation of iron in sustaining phytoplankton blooms in the Pine Island and Amundsen Polynyas (Southern Ocean) DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Thuroczy, C., Alderkamp, A., Laan, P., Gerringa, L. J., Mills, M. M., Van Dijken, G. L., de Baar, H. J., Arrigo, K. R. 2012; 71-76: 49-60
  • Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Gerringa, L. J., Alderkamp, A., Laan, P., Thuroczy, C., de Baar, H. J., Mills, M. M., Van Dijken, G. L., van Haren, H., Arrigo, K. R. 2012; 71-76: 16-31
  • Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Alderkamp, A., Mills, M. M., Van Dijken, G. L., Laan, P., Thuroczy, C., Gerringa, L. J., de Baar, H. J., Payne, C. D., Visser, R. J., Buma, A. G., Arrigo, K. R. 2012; 71-76: 32-48
  • Spatial distribution of pCO(2), Delta O-2/Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Tortell, P. D., Long, M. C., Payne, C. D., Alderkamp, A., Dutrieux, P., Arrigo, K. R. 2012; 71-76: 77-93
  • Phytoplankton biomass and pigment responses to Fe amendments in the Pine Island and Amundsen polynyas DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Mills, M. M., Alderkamp, A., Thuroczy, C., Van Dijken, G. L., Laan, P., de Baar, H. J., Arrigo, K. R. 2012; 71-76: 61-76
  • Shedding dynamic light on Fe limitation (DynaLiFe) Introduction DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Arrigo, K. R., Alderkamp, A. 2012; 71-76: 1-4
  • Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Arrigo, K. R., Lowry, K. E., Van Dijken, G. L. 2012; 71-76: 5-15
  • THE ROSS SEA IN A SEA OF CHANGE OCEANOGRAPHY Smith, W. O., Sedwick, P. N., Arrigo, K. R., Ainley, D. G., Orsi, A. H. 2012; 25 (3): 90-103
  • ASPIRE The Amundsen Sea Polynya International Research Expedition OCEANOGRAPHY Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., Alderkamp, A., Schofield, O., Abrahamsen, E. P., Arrigo, K. R., Bertilsson, S., Garay, D. L., Guerrero, R., Lowry, K. E., Moksnes, P., Ndungu, K., Post, A. F., Randall-Goodwin, E., Riemann, L., Severmann, S., Thatje, S., Van Dijken, G. L., Wilson, S. 2012; 25 (3): 40-53
  • Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean ICES JOURNAL OF MARINE SCIENCE Brown, Z. W., Arrigo, K. R. 2012; 69 (7): 1180-1193
  • Massive Phytoplankton Blooms Under Arctic Sea Ice SCIENCE Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F., Bates, N. R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K., Frey, K. E., Garley, R., Laney, S. R., Lubelczyk, L., Mathis, J., Matsuoka, A., Mitchell, B. G., Moore, G. W., Ortega-Retuerta, E., Pal, S., Polashenski, C. M., Reynolds, R. A., Schieber, B., Sosik, H. M., Stephens, M., Swift, J. H. 2012; 336 (6087): 1408-1408

    Abstract

    Phytoplankton blooms over Arctic Ocean continental shelves are thought to be restricted to waters free of sea ice. Here, we document a massive phytoplankton bloom beneath fully consolidated pack ice far from the ice edge in the Chukchi Sea, where light transmission has increased in recent decades because of thinning ice cover and proliferation of melt ponds. The bloom was characterized by high diatom biomass and rates of growth and primary production. Evidence suggests that under-ice phytoplankton blooms may be more widespread over nutrient-rich Arctic continental shelves and that satellite-based estimates of annual primary production in these waters may be underestimated by up to 10-fold.

    View details for DOI 10.1126/science.1215065

    View details for Web of Science ID 000305211700035

    View details for PubMedID 22678359

  • Mapping phytoplankton iron utilization: Insights into Southern Ocean supply mechanisms JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Boyd, P. W., Arrigo, K. R., Strzepek, R., van Dijken, G. L. 2012; 117
  • Simulation of a sea ice ecosystem using a hybrid model for slush layer desalination JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Saenz, B. T., Arrigo, K. R. 2012; 117
  • THE EFFECT OF IRON LIMITATION ON THE PHOTOPHYSIOLOGY OF PHAEOCYSTIS ANTARCTICA (PRYMNESIOPHYCEAE) AND FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) UNDER DYNAMIC IRRADIANCE JOURNAL OF PHYCOLOGY Alderkamp, A., Kulk, G., Buma, A. G., Visser, R. J., Van Dijken, G. L., Mills, M. M., Arrigo, K. R. 2012; 48 (1): 45-59
  • Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Sedwick, P. N., Marsay, C. M., Sohst, B. M., Aguilar-Islas, A. M., Lohan, M. C., Long, M. C., Arrigo, K. R., Dunbar, R. B., Saito, M. A., Smith, W. O., DiTullio, G. R. 2011; 116
  • High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice GEOPHYSICAL RESEARCH LETTERS Asher, E. C., Dacey, J. W., Mills, M. M., Arrigo, K. R., Tortell, P. D. 2011; 38
  • Spatial and temporal variation of photosynthetic parameters in natural phytoplankton assemblages in the Beaufort Sea, Canadian Arctic POLAR BIOLOGY Palmer, M. A., Arrigo, K. R., Mundy, C. J., Ehn, J. K., Gosselin, M., Barber, D. G., Martin, J., Alou, E., Roy, S., Tremblay, J. 2011; 34 (12): 1915-1928
  • Primary productivity in the Arctic Ocean: Impacts of complex optical properties and subsurface chlorophyll maxima on large-scale estimates JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Matrai, P. A., Van Dijken, G. L. 2011; 116
  • Secular trends in Arctic Ocean net primary production JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Van Dijken, G. L. 2011; 116
  • Short-term photoacclimation effects on photoinhibition of phytoplankton in the Drake Passage (Southern Ocean) DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS Alderkamp, A., Garcon, V., de Baar, H. J., Arrigo, K. R. 2011; 58 (9): 943-955
  • A reassessment of primary production and environmental change in the Bering Sea JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Brown, Z. W., Van Dijken, G. L., Arrigo, K. R. 2011; 116
  • Variation in particulate C and N isotope composition following iron fertilization in two successive phytoplankton communities in the Southern Ocean GLOBAL BIOGEOCHEMICAL CYCLES Berg, G. M., Mills, M. M., Long, M. C., Bellerby, R., Strass, V., Savoye, N., Roettgers, R., Croot, P. L., Webb, A., Arrigo, K. R. 2011; 25
  • Responses of psbA, hli and ptox genes to changes in irradiance in marine Synechococcus and Prochlorococcus AQUATIC MICROBIAL ECOLOGY Berg, G. M., Shrager, J., van Dijken, G., Mills, M. M., Arrigo, K. R., Grossman, A. R. 2011; 65 (1): 1-14

    View details for DOI 10.3354/ame01528

    View details for Web of Science ID 000297117200001

  • Influence of atmospheric nutrients on primary productivity in a coastal upwelling region GLOBAL BIOGEOCHEMICAL CYCLES Mackey, K. R., Van Dijken, G. L., Mazloom, S., Erhardt, A. M., Ryan, J., Arrigo, K. R., Paytan, A. 2010; 24
  • STRATEGIES AND RATES OF PHOTOACCLIMATION IN TWO MAJOR SOUTHERN OCEAN PHYTOPLANKTON TAXA: PHAEOCYSTIS ANTARCTICA (HAPTOPHYTA) AND FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) JOURNAL OF PHYCOLOGY Kropuenske, L. R., Mills, M. M., Van Dijken, G. L., Alderkamp, A., Berg, G. M., Robinson, D. H., Welschmeyer, N. A., Arrigo, K. R. 2010; 46 (6): 1138-1151
  • PHOTOPHYSIOLOGY IN TWO SOUTHERN OCEAN PHYTOPLANKTON TAXA: PHOTOSYNTHESIS OF PHAEOCYSTIS ANTARCTICA (PRYMNESIOPHYCEAE) AND FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) UNDER SIMULATED MIXED-LAYER IRRADIANCE JOURNAL OF PHYCOLOGY Mills, M. M., Kropuenske, L. R., Van Dijken, G. L., Alderkamp, A., Berg, G. M., Robinson, D. H., Welschmeyer, N. A., Arrigo, K. R. 2010; 46 (6): 1114-1127
  • Air-sea flux of CO2 in the Arctic Ocean, 1998-2003 JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES Arrigo, K. R., Pabi, S., Van Dijken, G. L., Maslowski, W. 2010; 115
  • Stable isotope composition of dissolved inorganic carbon and particulate organic carbon in sea ice from the Ross Sea, Antarctica JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Munro, D. R., Dunbar, R. B., Mucciarone, D. A., Arrigo, K. R., Long, M. C. 2010; 115
  • Responding to climate change: Adelie Penguins confront astronomical and ocean boundaries ECOLOGY Ballard, G., Toniolo, V., Ainley, D. G., Parkinson, C. L., Arrigo, K. R., Trathan, P. N. 2010; 91 (7): 2056-2069

    Abstract

    Long-distance migration enables many organisms to take advantage of lucrative breeding and feeding opportunities during summer at high latitudes and then to move to lower, more temperate latitudes for the remainder of the year. The latitudinal range of the Adélie Penguin (Pygoscelis adeliae) spans approximately 22 degrees. Penguins from northern colonies may not migrate, but due to the high latitude of Ross Island colonies, these penguins almost certainly undertake the longest migrations for the species. Previous work has suggested that Adélies require both pack ice and some ambient light at all times of year. Over a three-year period, which included winters of both extensive and reduced sea ice, we investigated characteristics of migratory routes and wintering locations of Adélie Penguins from two colonies of very different size on Ross Island, Ross Sea, the southernmost colonies for any penguin. We acquired data from 3-16 geolocation sensor tags (GLS) affixed to penguins each year at both Cape Royds and Cape Crozier in 2003-2005. Migrations averaged 12760 km, with the longest being 17 600 km, and were in part facilitated by pack ice movement. Trip distances varied annually, but not by colony. Penguins rarely traveled north of the main sea-ice pack, and used areas with high sea-ice concentration, ranging from 75% to 85%, about 500 km inward from the ice edge. They also used locations where there was some twilight (2-7 h with sun < 6 degrees below the horizon). We report the present Adélie Penguin migration pattern and conjecture on how it probably has changed over the past approximately 12000 years, as the West Antarctic Ice Sheet withdrew southward across the Ross Sea, a situation that no other Adélie Penguin population has had to confront. As sea ice extent in the Ross Sea sector decreases in the near future, as predicted by climate models, we can expect further changes in the migration patterns of the Ross Sea penguins.

    View details for Web of Science ID 000279563700024

    View details for PubMedID 20715628

  • Magnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton NATURE GEOSCIENCE Mills, M. M., Arrigo, K. R. 2010; 3 (6): 412-416

    View details for DOI 10.1038/NGEO856

    View details for Web of Science ID 000278134100017

  • Can photoinhibition control phytoplankton abundance in deeply mixed water columns of the Southern Ocean? LIMNOLOGY AND OCEANOGRAPHY Alderkamp, A., de Baar, H. J., Visser, R. J., Arrigo, K. R. 2010; 55 (3): 1248-1264
  • Ross ice shelf cavity circulation, residence time, and melting: Results from a model of oceanic chlorofluorocarbons CONTINENTAL SHELF RESEARCH Reddy, T. E., Holland, D. M., Arrigo, K. R. 2010; 30 (7): 733-742
  • Contrasting spring and summer phytoplankton dynamics in the nearshore Southern California Bight LIMNOLOGY AND OCEANOGRAPHY Santoro, A. E., Nidzieko, N. J., Van Dijken, G. L., Arrigo, K. R., Boehm, A. B. 2010; 55 (1): 264-278
  • Non-Redfield N:P utilization by phytoplankton signifcantly impacts oceanic nitrogen fixation Nature Geoscience Mills, M. M., Arrigo, K. R. 2010; 3: 412-416
  • Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea GEOPHYSICAL RESEARCH LETTERS Mundy, C. J., Gosselin, M., Ehn, J., Gratton, Y., Rossnagel, A., Barber, D. G., Martin, J., Tremblay, J., Palmer, M., Arrigo, K. R., Darnis, G., Fortier, L., Else, B., Papakyriakou, T. 2009; 36
  • Photophysiology in two major Southern Ocean phytoplankton taxa: Photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus LIMNOLOGY AND OCEANOGRAPHY Kropuenske, L. R., Mills, M. M., Van Dijken, G. L., Bailey, S., Robinson, D. H., Welschmeyer, N. A., Arrigo, K. R. 2009; 54 (4): 1176-1196
  • Influence of light and temperature on the marine iron cycle: From theoretical to global modeling GLOBAL BIOGEOCHEMICAL CYCLES Tagliabue, A., Bopp, L., Aumont, O., Arrigo, K. R. 2009; 23
  • Sea ice variability and primary productivity in the Ross Sea, Antarctica, from methylsulphonate snow record GEOPHYSICAL RESEARCH LETTERS Rhodes, R. H., Bertler, N. A., Baker, J. A., Sneed, S. B., Oerter, H., Arrigo, K. R. 2009; 36
  • Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment LIMNOLOGY AND OCEANOGRAPHY Jones, N. L., Thompson, J. K., Arrigo, K. R., Monismith, S. G. 2009; 54 (3): 952-969
  • Coastal phytoplankton blooms in the Southern California Bight: evaluating the roles of land-based and upwelled nutrient delivery Limnology and Oceanography Santoro, A. E., Nidzieko, N. J., van Dijken, G. L., Arrigo, K. R., Boehm, A. B. 2009; 55: 264-278
  • Coastal Southern Ocean: A strong anthropogenic CO2 sink GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G., Long, M. 2008; 35 (21)
  • Impact of a shrinking Arctic ice cover on marine primary production GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G., Pabi, S. 2008; 35 (19)
  • Understanding nitrogen limitation in Aureococcus anophagefferens (Pelagophyceae) through cDNA and qRT-PCR analysis JOURNAL OF PHYCOLOGY Berg, G. M., Shrager, J., Gloeckner, G., Arrigo, K. R., Grossman, A. R. 2008; 44 (5): 1235-1249
  • Primary production in the Southern Ocean, 1997-2006 JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Van Dijken, G. L., Bushinsky, S. 2008; 113 (C8)
  • Primary production in the Arctic Ocean, 1998-2006 JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Pabi, S., Van Dijken, G. L., Arrigo, K. R. 2008; 113 (C8)
  • Impacts of atmospheric anthropogenic nitrogen on the open ocean SCIENCE Duce, R. A., Laroche, J., ALTIERI, K., Arrigo, K. R., BAKER, A. R., Capone, D. G., CORNELL, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M., Ulloa, O., Voss, M., Ward, B., Zamora, L. 2008; 320 (5878): 893-897

    Abstract

    Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to approximately 3% of the annual new marine biological production, approximately 0.3 petagram of carbon per year. This input could account for the production of up to approximately 1.6 teragrams of nitrous oxide (N2O) per year. Although approximately 10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.

    View details for DOI 10.1126/science.1150369

    View details for Web of Science ID 000255868300032

    View details for PubMedID 18487184

  • Alternative photosynthetic electron flow to oxygen in marine Synechococcus BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS Bailey, S., Melis, A., Mackey, K. R., Cardol, P., Finazzi, G., van Dijken, G., Berg, G. M., Arrigo, K., Shrager, J., Grossman, A. 2008; 1777 (3): 269-276

    Abstract

    Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.

    View details for DOI 10.1016/j.bbabio.2008.01.002

    View details for Web of Science ID 000254674600004

    View details for PubMedID 18241667

  • Carbon cycle - Marine manipulations NATURE Arrigo, K. R. 2007; 450 (7169): 491-492

    View details for DOI 10.1038/450491a

    View details for Web of Science ID 000251158500030

    View details for PubMedID 18033286

  • The role of thermal and mechanical processes in the formation of the Ross Sea summer polynya JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Reddy, T. E., Arrigo, K. R., Holland, D. M. 2007; 112 (C7)
  • Interannual variation in air-sea CO2 flux in the Ross Sea, Antarctica: A model analysis JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Van Dijken, G. L. 2007; 112 (C3)
  • A method for representing and developing process models ECOLOGICAL COMPLEXITY Borrett, S. R., Bridewell, W., Langley, P., Arrigo, K. R. 2007; 4 (1-2): 1-12
  • Satellite estimation of marine particulate organic carbon in waters dominated by different phytoplankton taxa JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Pabi, S., Arrigo, K. R. 2006; 111 (C9)
  • Constraints on the extent of the Ross Sea phytoplankton bloom JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Reddy, T. E., Arrigo, K. R. 2006; 111 (C7)
  • Processes governing the supply of iron to phytoplankton in stratified seas JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Tagliabue, A., Arrigo, K. R. 2006; 111 (C6)
  • Examination of diel changes in global transcript accumulation in Synechocystis (cyanobacteria) JOURNAL OF PHYCOLOGY Labiosa, R. G., Arrigo, K. R., Tu, C. J., Bhaya, D., Bay, S., Grossman, A. R., Shrager, J. 2006; 42 (3): 622-636
  • A comparison of global estimates of marine primary production from ocean color DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Carr, M., Friedrichs, M. A., Schmeltz, M., Aita, M. N., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Le Quere, C., Lohrenz, S., Marra, J., Melin, F., Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., Yamanaka, Y. 2006; 53 (5-7): 741-770
  • Marine microorganisms and global nutrient cycles NATURE Arrigo, K. R. 2005; 437 (7057): 349-355

    Abstract

    The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon dioxide. Because of their capacity for rapid growth, marine microorganisms are a major component of global nutrient cycles. Understanding what controls their distributions and their diverse suite of nutrient transformations is a major challenge facing contemporary biological oceanographers. What is emerging is an appreciation of the previously unknown degree of complexity within the marine microbial community.

    View details for DOI 10.1038/nature04158

    View details for Web of Science ID 000231849100041

    View details for PubMedID 16163345

  • Decadal-scale changes in the climate and biota of the Pacific sector of the Southern Ocean, 1950s to the 1990s ANTARCTIC SCIENCE Ainley, D. G., Clarke, E. D., Arrigo, K., Fraser, W. R., Kato, A., Barton, K. J., Wilson, P. R. 2005; 17 (2): 171-182
  • Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean NATURE Beman, J. M., Arrigo, K. R., Matson, P. A. 2005; 434 (7030): 211-214

    Abstract

    Biological productivity in most of the world's oceans is controlled by the supply of nutrients to surface waters. The relative balance between supply and removal of nutrients--including nitrogen, iron and phosphorus--determines which nutrient limits phytoplankton growth. Although nitrogen limits productivity in much of the ocean, large portions of the tropics and subtropics are defined by extreme nitrogen depletion. In these regions, microbial denitrification removes biologically available forms of nitrogen from the water column, producing substantial deficits relative to other nutrients. Here we demonstrate that nitrogen-deficient areas of the tropical and subtropical oceans are acutely vulnerable to nitrogen pollution. Despite naturally high nutrient concentrations and productivity, nitrogen-rich agricultural runoff fuels large (54-577 km2) phytoplankton blooms in the Gulf of California. Runoff exerts a strong and consistent influence on biological processes, in 80% of cases stimulating blooms within days of fertilization and irrigation of agricultural fields. We project that by the year 2050, 27-59% of all nitrogen fertilizer will be applied in developing regions located upstream of nitrogen-deficient marine ecosystems. Our findings highlight the present and future vulnerability of these ecosystems to agricultural runoff.

    View details for DOI 10.1038/nature03370

    View details for Web of Science ID 000227494500044

    View details for PubMedID 15758999

  • Iron in the Ross Sea: 2. Impact of discrete iron addition strategies JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Tagliabue, A. 2005; 110 (C3)
  • Iron in the Ross Sea: 1. Impact on CO2 fluxes via variation in phytoplankton functional group and non-Redfield stoichiometry JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Tagliabue, A., Arrigo, K. R. 2005; 110 (C3)
  • Large scale importance of sea ice biology in the Southern Ocean ANTARCTIC SCIENCE Arrigo, K. R., Thomas, D. N. 2004; 16 (4): 471-486
  • Increased exposure of Southern Ocean phytoplankton to ultraviolet radiation GEOPHYSICAL RESEARCH LETTERS Lubin, D., Arrigo, K. R., van Dijken, G. L. 2004; 31 (9)
  • Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G. L. 2004; 31 (8)
  • Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY Arrigo, K. R., van Dijken, G. L. 2004; 51 (1-3): 117-138
  • The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: Evidence from SeaWiFS and MODIS LIMNOLOGY AND OCEANOGRAPHY Labiosa, R. G., Arrigo, K. R. 2003; 48 (6): 2355-2368
  • Physical control of chlorophyll a, POC, and TPN distributions in the pack ice of the Ross Sea, Antarctica JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., ROBINSON, D. H., Dunbar, R. B., Leventer, A. R., Lizotte, M. P. 2003; 108 (C10)
  • Phytoplankton dynamics within 37 Antarctic coastal polynya systems JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., van Dijken, G. L. 2003; 108 (C8)
  • Impact of iceberg C-19 on Ross Sea primary production GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G. L. 2003; 30 (16)
  • A coupled ocean-ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxonomic variability and primary production JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Worthen, D. L., ROBINSON, D. H. 2003; 108 (C7)
  • Impact of a deep ozone hole on Southern Ocean primary production JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Lubin, D., van Dijken, G. L., Holm-Hansen, O., Morrow, E. 2003; 108 (C5)
  • A comparison between excess barium and barite as indicators of carbon export PALEOCEANOGRAPHY Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., MURRAY, R. W. 2003; 18 (1)
  • Anomalously low zooplankton abundance in the Ross Sea: An alternative explanation LIMNOLOGY AND OCEANOGRAPHY Tagliabue, A., Arrigo, K. R. 2003; 48 (2): 686-699
  • Assessing the ecological impact of the Antarctic ozone hole using multisensor satellite data ULTRAVIOLET GROUND- AND SPACE-BASED MEASUREMENTS, MODELS AND EFFECTS III Lubin, D., Arrigo, K., Holm-Hansen, O. 2003; 5156: 245-253
  • Discovering ecosystem models from time-series data DISCOVERY SCIENCE, PROCEEDINGS George, D., Saito, K., Langley, P., Bay, S., Arrigo, K. R. 2003; 2843: 141-152
  • Taxon-specific differences in C/P and N/P drawdown for phytoplankton in the Ross Sea, Antarctica GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., Dunbar, R. B., Lizotte, M. P., ROBINSON, D. H. 2002; 29 (19)
  • Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance GLOBAL BIOGEOCHEMICAL CYCLES Campbell, J., Antoine, D., Armstrong, R., Arrigo, K., Balch, W., Barber, R., Behrenfeld, M., Bidigare, R., Bishop, J., Carr, M. E., Esaias, W., Falkowski, P., Hoepffner, N., Iverson, R., Kiefer, D., Lohrenz, S., Marra, J., Morel, A., Ryan, J., Vedernikov, V., Waters, K., Yentsch, C., Yoder, J. 2002; 16 (3)
  • Ecological impact of a large Antarctic iceberg GEOPHYSICAL RESEARCH LETTERS Arrigo, K. R., van Dijken, G. L., Ainley, D. G., Fahnestock, M. A., Markus, T. 2002; 29 (7)
  • Global mapping of underwater UV irradiances and DNA-weighted exposures using total ozone mapping spectrometer and sea-viewing wide field-of-view sensor data products JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Vasilkov, A., Krotkov, N., Herman, J., McClain, C., Arrigo, K., Robinson, W. T. 2001; 106 (C11): 27205-27219
  • The sulfur-isotopic composition of cenozoic seawater sulfate: Implications for pyrite burial and atmospheric oxygen INTERNATIONAL GEOLOGY REVIEW Paytan, A., Arrigo, K. R. 2000; 42 (6): 491-498
  • Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., DiTullio, G. R., Dunbar, R. B., Robinson, D. H., VanWoert, M., Worthen, D. L., Lizotte, M. P. 2000; 105 (C4): 8827-8845
  • Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica NATURE DiTullio, G. R., Grebmeier, J. M., Arrigo, K. R., Lizotte, M. P., ROBINSON, D. H., Leventer, A., Barry, J. B., VanWoert, M. L., Dunbar, R. B. 2000; 404 (6778): 595-598

    Abstract

    The Southern Ocean is very important for the potential sequestration of carbon dioxide in the oceans and is expected to be vulnerable to changes in carbon export forced by anthropogenic climate warming. Annual phytoplankton blooms in seasonal ice zones are highly productive and are thought to contribute significantly to pCO2 drawdown in the Southern Ocean. Diatoms are assumed to be the most important phytoplankton class with respect to export production in the Southern Ocean; however, the colonial prymnesiophyte Phaeocystis antarctica regularly forms huge blooms in seasonal ice zones and coastal Antarctic waters. There is little evidence regarding the fate of carbon produced by P. antarctica in the Southern Ocean, although remineralization in the upper water column has been proposed to be the main pathway in polar waters. Here we present evidence for early and rapid carbon export from P. antarctica blooms to deep water and sediments in the Ross Sea. Carbon sequestration from P. antarctica blooms may influence the carbon cycle in the Southern Ocean, especially if projected climatic changes lead to an alteration in the structure of the phytoplankton community.

    View details for Web of Science ID 000086400100051

    View details for PubMedID 10766240

  • Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean SCIENCE Arrigo, K. R., ROBINSON, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G. R., VanWoert, M., Lizotte, M. P. 1999; 283 (5400): 365-367
  • Photophysiological evidence of nutrient limitation of platelet ice algae in McMurdo Sound, Antarctica JOURNAL OF PHYCOLOGY Robinson, D. H., Arrigo, K. R., Kolber, Z., Gosselin, M., Sullivan, C. W. 1998; 34 (5): 788-797
  • Bio-optical properties of the southwestern Ross Sea JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., ROBINSON, D. H., Worthen, D. L., Schieber, B., Lizotte, M. P. 1998; 103 (C10): 21683-21695
  • Primary production in Southern Ocean waters JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Worthen, D., Schnell, A., Lizotte, M. P. 1998; 103 (C8): 15587-15600
  • Physical forcing of phytoplankton dynamics in the southwestern Ross Sea JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Weiss, A. M., Smith, W. O. 1998; 103 (C1): 1007-1021
  • The impact of chromophoric dissolved organic matter on UV inhibition of primary productivity in the open ocean Marine Ecology Progress Series Arrigo, K. R., Brown, C. W. 1998; 140: 207-216
  • Physical forcing of phytoplankton dynamics in the western Ross Sea Journal of Geophysical Research Arrigo, K. R., Weiss, A. M., Smith, W. O. 1998; 103: 1007-1021
  • Photophysiological evidence of nutrient limitation in the platelet ice of McMurdo Sound, Antarctica Journal of Phycology Robinson, D. H., Arrigo, K. R., Kolber, Z., Gosselin, M., Sullivan, C. W. 1998; 34: 788-797
  • A high resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: Photosynthetic and bio-optical characteristics of a dense microalgal bloom Marine Ecology Progress Series Arrigo, K. R., Robinson, D. H., Sullivan, C. W. 1998; 98: 173-185
  • Primary production in Antarctic sea ice SCIENCE Arrigo, K. R., Worthen, D. L., Lizotte, M. P., Dixon, P., Dieckmann, G. 1997; 276 (5311): 394-397
  • Observations and simulations of physical and biological processes at ocean weather station P, 1951-1980 JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS McClain, C. R., Arrigo, K., Tai, K. S., Turk, D. 1996; 101 (C2): 3697-3713
  • SeaDAS: A processing package for ocean color satellite imagery 12TH INTERNATIONAL CONFERENCE ON INTERACTIVE INFORMATION AND PROCESSING SYSTEMS (IIPS) FOR METEOROLOGY, OCEANOGRAPHY, AND HYDROLOGY Fu, G., Schieber, B., Settle, K., DARZI, M., McClain, C. R., Arrigo, K. 1996: 451-456
  • HIGH-RESOLUTION STUDY OF THE PLATELET ICE ECOSYSTEM IN MCMURDO SOUND, ANTARCTICA - BIOMASS, NUTRIENT, AND PRODUCTION PROFILES WITHIN A DENSE MICROALGAL BLOOM MARINE ECOLOGY PROGRESS SERIES Arrigo, K. R., Dieckmann, G., Gosselin, M., ROBINSON, D. H., Fritsen, C. H., Sullivan, C. W. 1995; 127 (1-3): 255-268
  • MICROALGAL LIGHT-HARVESTING IN EXTREME LOW-LIGHT ENVIRONMENTS IN MCMURDO SOUND, ANTARCTICA JOURNAL OF PHYCOLOGY ROBINSON, D. H., Arrigo, K. R., Iturriaga, R., Sullivan, C. W. 1995; 31 (4): 508-520
  • Adaptation to low irradiance and restricted spectral distribution by Antarctic microalgae from under-ice habitats Journal of Phycology Robinson, D. H., Arrigo, K. R., Iturriaga, R., Sullivan, C. W. 1995; 31: 508-520
  • IMPACT OF OZONE DEPLETION ON PHYTOPLANKTON GROWTH IN THE SOUTHERN-OCEAN - LARGE-SCALE SPATIAL AND TEMPORAL VARIABILITY MARINE ECOLOGY PROGRESS SERIES Arrigo, K. R. 1994; 114 (1-2): 1-12
  • SPRING PHYTOPLANKTON PRODUCTION IN THE WESTERN ROSS SEA SCIENCE Arrigo, K. R., McClain, C. R. 1994; 266 (5183): 261-263

    Abstract

    Coastal zone color scanner (CZCS) imagery of the western Ross Sea revealed the Presence of an intense phytoplankton bloom covering >106,000 square kilometers in early December 1978. This bloom developed inside the Ross Sea polynya, within 2 weeks of initial polynya formation in late November. Primary productivity calculated from December imagery (3.9 grams of carbon per square meter per day) was up to four times the values measured during in situ studies in mid-January to February 1979. Inclusion of this early season production yields a spring-to-summer estimate of 141 to 171 grams of carbon per square meter, three to four times the values previously reported for the western Ross Sea.

    View details for Web of Science ID A1994PM13400029

    View details for PubMedID 17771447

  • A HIGH RESOLUTION BIO-OPTICAL MODEL OF MICROALGAL GROWTH: TESTS USING SEA-ICE ALGAL COMMUNITY TIME-SERIES DATA LIMNOLOGY AND OCEANOGRAPHY Arrigo, K. R., Sullivan, C. W. 1994; 39 (3): 609-631
  • DISTRIBUTIONS OF PHYTOPLANKTON BLOOMS IN THE SOUTHERN-OCEAN SCIENCE Sullivan, C. W., Arrigo, K. R., McClain, C. R., Comiso, J. C., Firestone, J. 1993; 262 (5141): 1832-1837

    Abstract

    A regional pigment retrieval algorithm for the Nimbus-7 Coastal Zone Color Scanner (CZCS) has been tested for the Southern Ocean. The pigment concentrations estimated with this algorithm agree to within 5 percent with in situ values and are more than twice as high as those previously reported. The CZCS data also revealed an asymmetric distribution of enhanced pigments in the waters surrounding Antarctica; in contrast, most surface geophysical properties are symmetrically distributed. The asymmetry is coherent with circumpolar current patterns and the availability of silicic acid in surface waters. Intense blooms (>1 milligram of pigment per cubic meter) that occur downcurrent from continental masses result from dissolved trace elements such as iron derived from shelf sediments and glacial melt.

    View details for Web of Science ID A1993MM51100025

    View details for PubMedID 17829629

  • A HIGH-RESOLUTION STUDY OF THE PLATELET ICE ECOSYSTEM IN MCMURDO SOUND, ANTARCTICA - PHOTOSYNTHETIC AND BIOOPTICAL CHARACTERISTICS OF A DENSE MICROALGAL BLOOM MARINE ECOLOGY PROGRESS SERIES Arrigo, K. R., ROBINSON, D. H., Sullivan, C. W. 1993; 98 (1-2): 173-185
  • A SIMULATED ANTARCTIC FAST ICE ECOSYSTEM JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Kremer, J. N., Sullivan, C. W. 1993; 98 (C4): 6929-6946
  • THE INFLUENCE OF SALINITY AND TEMPERATURE COVARIATION ON THE PHOTOPHYSIOLOGICAL CHARACTERISTICS OF ANTARCTIC SEA ICE MICROALGAE JOURNAL OF PHYCOLOGY Arrigo, K. R., Sullivan, C. W. 1992; 28 (6): 746-756
  • A HIGH-RESOLUTION SAMPLER FOR NUTRIENT AND CHLOROPHYLL A PROFILES OF THE SEA ICE PLATELET LAYER AND UNDERLYING WATER COLUMN BELOW FAST ICE IN POLAR OCEANS - PRELIMINARY-RESULTS MARINE ECOLOGY PROGRESS SERIES Dieckmann, G. S., Arrigo, K., Sullivan, C. W. 1992; 80 (2-3): 291-300
  • A BIOOPTICAL MODEL OF ANTARCTIC SEA ICE JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS Arrigo, K. R., Sullivan, C. W., Kremer, J. N. 1991; 96 (C6): 10581-10592

Books and Book Chapters


  • Primary Producers and Sea Ice Sea Ice Arrigo, K. R., Lizotte, M. P., Mock, T. edited by Thomas, D. N., Dieckmann, G. S. Blackwell Science, Ltd., Oxford, UK. 2010; 2nd: 283-326
  • Physical control of primary productivity in Arctic and Antarctic polynyas Polynyas: Windows to the World Arrigo, K. R. edited by Smith, W. O., Barber, D. Elsevier, Amsterdam. 2007
  • Evaluating photosynthetic carbon fixation during Phaeocystis antarctica blooms Biogeochemistry of the Ross Sea Robinson, D. H., Arrigo, K. R., DiTullio, G. R., Lizotte, M. P. edited by DiTullio, G. R., Dunbar, R. B. 2003: 77-91
  • A coupled ocean-ecosystem model of the Ross Sea. Part 1: Interannual variability of primary production and phytoplankton community structure Biogeochemistry of the Ross Sea Worthen, D. L., Arrigo, K. R. edited by DiTillio, G. R., Dunbar, R. B. 2003: 93-105
  • Non-Redfield production and export of marine organic matter: A recurrent part of the annual cycle in the Ross Sea, Antarctica Biogeochemistry of the Ross Sea Dunbar, R. B., Arrigo, K. R., Lutz, M., DiTullio, G. D., Leventer, A. R., Lizotte, M. P., Van Woert, M. P., Robinson, D. H. edited by DiTullio, G. R., Dunbar, R. B. 2003: 179-195
  • Primary production in sea ice Sea Ice: An Introduction to its physics, biology, chemistry and geology Arrigo, K. R. edited by Thomas, D. N., Dieckmann, G. S. Blackwell Publishers, Oxford, UK. 2003
  • Primary production in the Antarctic ice pack Antarctic sea ice biological processes, interactions, and variability Arrigo, K. R., Worthen, D. L., Dixon, P., Lizotte, M. P. edited by Arrigo, K. R., Lizotte, M. P. 1998: 23-43

Conference Proceedings


  • Photophysiology in Two Major Southern Ocean Phytoplankton Taxa: Photosynthesis and Growth of Phaeocystis antarctica and Fragilariopsis cylindrus under Different Irradiance Levels Arrigo, K. R., Mills, M. M., Kropuenske, L. R., Van Dijken, G. L., Alderkamp, A., Robinson, D. H. OXFORD UNIV PRESS INC. 2010: 950-966

    Abstract

    The Ross Sea, Antarctica, supports two distinct populations of phytoplankton, one that grows well in sea ice and blooms in the shallow mixed layers of the Western marginal ice zone and the other that can be found in sea ice but thrives in the deeply mixed layers of the Ross Sea. Dominated by diatoms (e.g. Fragilariopsis cylindrus) and the prymnesiophyte Phaeocystis antarctica, respectively, the processes leading to the development of these different phytoplankton assemblages are not well known. The goal of this article was to gain a better understanding of the photophysiological characteristics that allow each taxon to dominate its specific habitat. Cultures of F. cylindrus and P. antarctica were each grown semi-continuously at four different constant irradiances (5, 25, 65, and 125 µmol quanta/m2/s). Fragilariopsis cylindrus produced far less photosynthetic pigment per cell than did P. antarctica but much more photoprotective pigment. Fragilariopsis cylindrus also exhibited substantially lower rates of photosynthesis and growth but also was far less susceptible to photoinhibition of cell growth. Excess photosynthetic capacity, a measure of the ability of phytoplankton to exploit variable light environments, was significantly higher in both strains of P. antarctica than in F. cylindrus. The combination of these characteristics suggests that F. cylindrus has a competitive advantage under conditions where mixed layers are shallow and light levels are relatively constant and high. In contrast, P. antarctica should dominate waters where mixed layers are deep and light levels are variable. These results are consistent with distributions of phytoplankton in the Ross Sea and suggest that light is the primary factor determining composition of phytoplankton communities.

    View details for DOI 10.1093/icb/icq021

    View details for Web of Science ID 000284430400005

    View details for PubMedID 21558252

  • Inductive revision of quantitative process models Asgharbeygi, N., Langley, P., Bay, S., Arrigo, K. ELSEVIER SCIENCE BV. 2006: 70-79
  • The vertical flux of particulate matter in the polynya of Terra Nova Bay. Part I. Chemical constituents Accornero, A., Manno, C., Arrigo, K. R., Martini, A., Tucci, S. CAMBRIDGE UNIV PRESS. 2003: 119-132
  • Atmospheric forcing of the Ross Sea polynya during Summer Sixth Conference on Polar Meteorology and Oceanography, American Meteorological Society Bromwich, D. H., Monaghan, A. J., Rogers, A. N., Van Woert , M. L., Arrigo, K. R. 2001: J23-J26
  • Atmospheric forcing of the ross sea polynya during (Spring) Fifth Conference on Polar Meteorology and Oceanography Rogers, A. N., Bromwich, D. H., Arrigo, K. R. 1999: 448-451