Stanford Advisors

All Publications

  • Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides NATURE MATERIALS Hong, J., Gent, W. E., Xiao, P., Lim, K., Seo, D., Wu, J., Csernica, P. M., Takacs, C. J., Nordlund, D., Sun, C., Stone, K. H., Passarello, D., Yang, W., Prendergast, D., Ceder, G., Toney, M. F., Chueh, W. C. 2019; 18 (3): 256-+
  • Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials NATURE CATALYSIS Zheng, X., Ji, Y., Tang, J., Wang, J., Liu, B., Steinruck, H., Lim, K., Li, Y., Toney, M. F., Chan, K., Cui, Y. 2019; 2 (1): 55–61
  • Fluid-enhanced surface diffusion controls intraparticle phase transformations NATURE MATERIALS Li, Y., Chen, H., Lim, K., Deng, H. D., Lim, J., Fraggedakis, D., Attia, P. M., Lee, S., Jin, N., Moskon, J., Guan, Z., Gent, W. E., Hong, J., Yu, Y., Gaberscek, M., Islam, M., Bazant, M. Z., Chueh, W. C. 2018; 17 (10): 915-+
  • The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting ENERGY & ENVIRONMENTAL SCIENCE Zhai, S., Rojas, J., Ahlborg, N., Lim, K., Toney, M. F., Jin, H., Chueh, W. C., Majumdar, A. 2018; 11 (8): 2172–78

    View details for DOI 10.1039/c8ee00050f

    View details for Web of Science ID 000442262900024

  • Electrochemical trapping of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Chan, Z., Kitchaev, D. A., Weker, J., Schnedermann, C., Lim, K., Ceder, G., Tumas, W., Toney, M. F., Nocera, D. G. 2018; 115 (23): E5261–E5268


    Electrodeposited manganese oxide films are promising catalysts for promoting the oxygen evolution reaction (OER), especially in acidic solutions. The activity of these catalysts is known to be enhanced by the introduction of Mn3+ We present in situ electrochemical and X-ray absorption spectroscopic studies, which reveal that Mn3+ may be introduced into MnO2 by an electrochemically induced comproportionation reaction with Mn2+ and that Mn3+ persists in OER active films. Extended X-ray absorption fine structure (EXAFS) spectra of the Mn3+-activated films indicate a decrease in the Mn-O coordination number, and Raman microspectroscopy reveals the presence of distorted Mn-O environments. Computational studies show that Mn3+ is kinetically trapped in tetrahedral sites and in a fully oxidized structure, consistent with the reduction of coordination number observed in EXAFS. Although in a reduced state, computation shows that Mn3+ states are stabilized relative to those of oxygen and that the highest occupied molecular orbital (HOMO) is thus dominated by oxygen states. Furthermore, the Mn3+(Td) induces local strain on the oxide sublattice as observed in Raman spectra and results in a reduced gap between the HOMO and the lowest unoccupied molecular orbital (LUMO). The confluence of a reduced HOMO-LUMO gap and oxygen-based HOMO results in the facilitation of OER on the application of anodic potentials to the δ-MnO2 polymorph incorporating Mn3+ ions.

    View details for PubMedID 29784802

  • Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides NATURE COMMUNICATIONS Gent, W. E., Lim, K., Liang, Y., Li, Q., Barnes, T., Ahn, S., Stone, K. H., McIntire, M., Hong, J., Song, J., Li, Y., Mehta, A., Ermon, S., Tyliszczak, T., Kilcoyne, D., Vine, D., Park, J., Doo, S., Toney, M. F., Yang, W., Prendergast, D., Chueh, W. C. 2017; 8
  • High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate NATURE ENERGY Lee, M., Hong, J., Lopez, J., Sun, Y., Feng, D., Lim, K., Chueh, W. C., Toney, M. F., Cui, Y., Bao, Z. 2017; 2 (11)
  • Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1-xFexO3: triggering the anionic redox reaction JOURNAL OF MATERIALS CHEMISTRY A Satish, R., Lim, K., Bucher, N., Hartung, S., Aravindan, V., Franklin, J., Lee, J., Toney, M. F., Madhavi, S. 2017; 5 (27): 14387–96

    View details for DOI 10.1039/c7ta04194b

    View details for Web of Science ID 000405190000050