
Lijin Zhang
Ph.D. Student in Education, admitted Autumn 2022
All Publications
-
The Influence of Using Inaccurate Priors on Bayesian Multilevel Estimation
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL
2022
View details for DOI 10.1080/10705511.2022.2136185
View details for Web of Science ID 000889130300001
-
Evaluation and Comparison of SEM, ESEM, and BSEM in Estimating Structural Models with Potentially Unknown Cross-loadings
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL
2022; 29 (3): 327-338
View details for DOI 10.1080/10705511.2021.2006664
View details for Web of Science ID 000752395600001
-
Criteria for Parameter Identification in Bayesian Lasso Methods for Covariance Analysis: Comparing Rules for Thresholding, p-value, and Credible Interval
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL
2021; 28 (6): 941-950
View details for DOI 10.1080/10705511.2021.1945456
View details for Web of Science ID 000691759300001
-
Problematic Internet Usage and Self-Esteem in Chinese Undergraduate Students: The Mediation Effects of Individual Affect and Relationship Satisfaction
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH
2021; 18 (13)
Abstract
The aim of this cross-sectional study was to examine the mediating effects of individual affect and relationship satisfaction on the relationship between self-esteem and Problematic Internet Use (PIU). Affect was measured using the Positive and Negative Affect Schedule (PANAS), relationship satisfaction was assessed using a positive and negative semantic dimension scale, self-esteem was measured using the Rosenberg Self-Esteem Scale, and PIU was measured using the Problematic Internet Use scale with a sample of 507 Chinese university students (Mage = 20.41 years, SD = 2.49). The relationships between the variables were tested using structural equation modelling with a multiple mediation model. The results revealed that negative affect and the negative semantic dimensions of relationship satisfaction mediated the relationship between self-esteem and PIU. The implications of the results and the study's theoretical contributions are discussed.
View details for DOI 10.3390/ijerph18136949
View details for Web of Science ID 000671104800001
View details for PubMedID 34209642
View details for PubMedCentralID PMC8296993
-
A Partially Confirmatory Approach to Scale Development With the Bayesian Lasso
PSYCHOLOGICAL METHODS
2021; 26 (2): 210-235
Abstract
The exploratory and confirmatory approaches of factor analysis lie on two ends of a continuum of substantive input for scale development. Recent advancements in Bayesian regularization methods enable more flexibility in covering a wide range of the substantive continuum. Based on the Bayesian Lasso (least absolute shrinkage and selection operator) methods for the regression model and covariance matrix, this research proposes a partially confirmatory approach to address the loading and residual structures at the same time. With at least one specified loading per item, a one-step procedure can be applied to figure out both structures simultaneously. With a few specified loadings per factor, a two-step procedure is preferred to capture the model configuration correctly. In both cases, the Bayesian hierarchical formulation is implemented using Markov Chain Monte Carlo estimation with different Lasso or regular priors. Both simulated and real data sets were analyzed to evaluate the validity, robustness, and practical usefulness of the proposed approach across different situations. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
View details for DOI 10.1037/met0000293
View details for Web of Science ID 000655413000005
View details for PubMedID 32658502
-
blcfa: An R Package for Bayesian Model Modification in Confirmatory Factor Analysis
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL
2021; 28 (4): 649-658
View details for DOI 10.1080/10705511.2020.1867862
View details for Web of Science ID 000631937500001
-
Integration of Moderation and Mediation in a Latent Variable Framework: A Comparison of Estimation Approaches for the Second-Stage Moderated Mediation Model
FRONTIERS IN PSYCHOLOGY
2020; 11: 2167
Abstract
An increasing number of studies have focused on models that integrate moderation and mediation. Four approaches can be used to test integrated mediation and moderation models: path analysis (PA), product indicator analysis (PI, constrained approach and unconstrained approach), and latent moderated structural equations (LMS). To the best of our knowledge, few studies have compared the performances of PA, PI, and LMS in evaluating integrated mediation and moderation models. As a result, it is difficult for applied researchers to choose an appropriate method in their data analysis. This study investigates the performance of different approaches in analyzing the models, using the second-stage moderated mediation model as a representative model to be evaluated. Four approaches with bootstrapped standard errors are compared under different conditions. Moreover, LMS with robust standard errors and Bayesian estimation of LMS and PA were also considered. Results indicated that LMS with robust standard errors is the superior evaluation method in all study settings. And PA estimates could be severely underestimated as they ignore measurement errors. Furthermore, it is found that the constrained PI and unconstrained PI only provide acceptable estimates when the multivariate normal distribution assumption is satisfied. The practical guidelines were also provided to illustrate the implementation of LMS. This study could help to extend the application of LMS in psychology and social science research.
View details for DOI 10.3389/fpsyg.2020.02167
View details for Web of Science ID 000575360600001
View details for PubMedID 33013556
View details for PubMedCentralID PMC7511593