All Publications


  • Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry. American journal of human genetics Graff, M., Justice, A. E., Young, K. L., Marouli, E., Zhang, X., Fine, R. S., Lim, E., Buchanan, V., Rand, K., Feitosa, M. F., Wojczynski, M. K., Yanek, L. R., Shao, Y., Rohde, R., Adeyemo, A. A., Aldrich, M. C., Allison, M. A., Ambrosone, C. B., Ambs, S., Amos, C., Arnett, D. K., Atwood, L., Bandera, E. V., Bartz, T., Becker, D. M., Berndt, S. I., Bernstein, L., Bielak, L. F., Blot, W. J., Bottinger, E. P., Bowden, D. W., Bradfield, J. P., Brody, J. A., Broeckel, U., Burke, G., Cade, B. E., Cai, Q., Caporaso, N., Carlson, C., Carpten, J., Casey, G., Chanock, S. J., Chen, G., Chen, M., Chen, Y. I., Chen, W., Chesi, A., Chiang, C. W., Chu, L., Coetzee, G. A., Conti, D. V., Cooper, R. S., Cushman, M., Demerath, E., Deming, S. L., Dimitrov, L., Ding, J., Diver, W. R., Duan, Q., Evans, M. K., Falusi, A. G., Faul, J. D., Fornage, M., Fox, C., Freedman, B. I., Garcia, M., Gillanders, E. M., Goodman, P., Gottesman, O., Grant, S. F., Guo, X., Hakonarson, H., Haritunians, T., Harris, T. B., Harris, C. C., Henderson, B. E., Hennis, A., Hernandez, D. G., Hirschhorn, J. N., McNeill, L. H., Howard, T. D., Howard, B., Hsing, A. W., Hsu, Y. H., Hu, J. J., Huff, C. D., Huo, D., Ingles, S. A., Irvin, M. R., John, E. M., Johnson, K. C., Jordan, J. M., Kabagambe, E. K., Kang, S. J., Kardia, S. L., Keating, B. J., Kittles, R. A., Klein, E. A., Kolb, S., Kolonel, L. N., Kooperberg, C., Kuller, L., Kutlar, A., Lange, L., Langefeld, C. D., Le Marchand, L., Leonard, H., Lettre, G., Levin, A. M., Li, Y., Li, J., Liu, Y., Liu, Y., Liu, S., Lohman, K., Lotay, V., Lu, Y., Maixner, W., Manson, J. E., McKnight, B., Meng, Y., Monda, K. L., Monroe, K., Moore, J. H., Mosley, T. H., Mudgal, P., Murphy, A. B., Nadukuru, R., Nalls, M. A., Nathanson, K. L., Nayak, U., N'Diaye, A., Nemesure, B., Neslund-Dudas, C., Neuhouser, M. L., Nyante, S., Ochs-Balcom, H., Ogundiran, T. O., Ogunniyi, A., Ojengbede, O., Okut, H., Olopade, O. I., Olshan, A., Padhukasahasram, B., Palmer, J., Palmer, C. D., Palmer, N. D., Papanicolaou, G., Patel, S. R., Pettaway, C. A., Peyser, P. A., Press, M. F., Rao, D. C., Rasmussen-Torvik, L. J., Redline, S., Reiner, A. P., Rhie, S. K., Rodriguez-Gil, J. L., Rotimi, C. N., Rotter, J. I., Ruiz-Narvaez, E. A., Rybicki, B. A., Salako, B., Sale, M. M., Sanderson, M., Schadt, E., Schreiner, P. J., Schurmann, C., Schwartz, A. G., Shriner, D. A., Signorello, L. B., Singleton, A. B., Siscovick, D. S., Smith, J. A., Smith, S., Speliotes, E., Spitz, M., Stanford, J. L., Stevens, V. L., Stram, A., Strom, S. S., Sucheston, L., Sun, Y. V., Tajuddin, S. M., Taylor, H., Taylor, K., Tayo, B. O., Thun, M. J., Tucker, M. A., Vaidya, D., Van Den Berg, D. J., Vedantam, S., Vitolins, M., Wang, Z., Ware, E. B., Wassertheil-Smoller, S., Weir, D. R., Wiencke, J. K., Williams, S. M., Williams, L. K., Wilson, J. G., Witte, J. S., Wrensch, M., Wu, X., Yao, J., Zakai, N., Zanetti, K., Zemel, B. S., Zhao, W., Zhao, J. H., Zheng, W., Zhi, D., Zhou, J., Zhu, X., Ziegler, R. G., Zmuda, J., Zonderman, A. B., Psaty, B. M., Borecki, I. B., Cupples, L. A., Liu, C., Haiman, C. A., Loos, R., Ng, M. C., North, K. E. 2021

    Abstract

    Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.

    View details for DOI 10.1016/j.ajhg.2021.02.011

    View details for PubMedID 33713608

  • Metabolomic profiles in breast cancer: a pilot case-control study in the breast cancer family registry BMC CANCER Dougan, M. M., Li, Y., Chu, L. W., Haile, R. W., Whittemore, A. S., Han, S. S., Moore, S. C., Sampson, J. N., Andrulis, I. L., John, E. M., Hsing, A. W. 2018; 18: 532

    Abstract

    Metabolomics is emerging as an important tool for detecting differences between diseased and non-diseased individuals. However, prospective studies are limited.We examined the detectability, reliability, and distribution of metabolites measured in pre-diagnostic plasma samples in a pilot study of women enrolled in the Northern California site of the Breast Cancer Family Registry. The study included 45 cases diagnosed with breast cancer at least one year after the blood draw, and 45 controls. Controls were matched on age (within 5 years), family status, BRCA status, and menopausal status. Duplicate samples were included for reliability assessment. We used a liquid chromatography/gas chromatography mass spectrometer platform to measure metabolites. We calculated intraclass correlations (ICCs) among duplicate samples, and coefficients of variation (CVs) across metabolites.Of the 661 named metabolites detected, 338 (51%) were found in all samples, and 490 (74%) in more than 80% of samples. The median ICC between duplicates was 0.96 (25th - 75th percentile: 0.82-0.99). We observed a greater than 20% case-control difference in 24 metabolites (p < 0.05), although these associations were not significant after adjusting for multiple comparisons.These data show that assays are reproducible for many metabolites, there is a minimal laboratory variation for the same sample, and a large between-person variation. Despite small sample size, differences between cases and controls in some metabolites suggest that a well-powered large-scale study is likely to detect biological meaningful differences to provide a better understanding of breast cancer etiology.

    View details for PubMedID 29728083

  • Circadian genes and risk of prostate cancer in the prostate cancer prevention trial MOLECULAR CARCINOGENESIS Chu, L. W., Till, C., Yang, B., Tangen, C. M., Goodman, P. J., Yu, K., Zhu, Y., Han, S., Hoque, A. M., Ambrosone, C., Thompson, I., Leach, R., Hsing, A. W. 2018; 57 (3): 462–66

    Abstract

    Circadian genes have been considered as a possible biological mechanism for the observed relationship between circadian rhythm disruptions and increased risk of hormone-related cancers. In the current study, we investigated the relationship between circadian gene variants and prostate cancer risk and whether reducing bioavailable testosterone modifies the circadian genes-prostate cancer relationship. We conducted a nested case-control study among Caucasian men in the Prostate Cancer Prevention Trial (PCPT), a randomized placebo-controlled clinical trial to assess if finasteride (an androgen bioactivation inhibitor) could prevent prostate cancer. We evaluated the associations between 240 circadian gene variations and prostate cancer risk among 1092 biopsy-confirmed prostate cancer cases and 1089 biopsy-negative controls in the study (642 cases and 667 controls from the placebo group; 450 cases and 422 controls from the finasteride group), stratified by treatment group. Among men in the finasteride group, there were suggestive associations between NPAS2 variants and total prostate cancer risk, with one SNP remaining statistically significant after Bonferroni correction (rs746924, odds ratio [OR] = 1.5, P = 9.6 × 10-5 ). However, we found little evidence of increased prostate cancer risk (overall or by low/high grade) associated with circadian gene variations in men of the placebo group, suggesting potential modification of genetic effects by treatment. We did not find strong evidence that circadian gene variants influenced prostate cancer risk in men who were not on finasteride treatment. There were suggestive associations between NPAS2 variants and prostate cancer risk among men using finasteride, which warrants further investigations.

    View details for PubMedID 29318656

  • Measuring serum melatonin in postmenopausal women: Implications for epidemiologic studies and breast cancer studies. PloS one Chu, L. W., John, E. M., Yang, B. n., Kurian, A. W., Zia, Y. n., Yu, K. n., Ingles, S. A., Stanczyk, F. Z., Hsing, A. W. 2018; 13 (4): e0195666

    Abstract

    Circulating melatonin is a good candidate biomarker for studies of circadian rhythms and circadian disruption. However, epidemiologic studies on circulating melatonin are limited because melatonin is secreted at night, yet most epidemiologic studies collect blood during the day when melatonin levels are very low, and assays are lacking that are ultrasensitive to detect low levels of melatonin reliably.To assess the performance of a refined radioimmunoassay in measuring morning melatonin among women.We used morning serum samples from 47 postmenopausal women ages 48-80 years without a history of breast cancer who participated in the San Francisco Bay Area Breast Cancer Study, including 19 women who had duplicate measurements. The coefficient of variation (CV) and intraclass coefficient (ICC) were estimated using the random effect model.Reproducibility for the assay was satisfactory, with a CV of 11.2% and an ICC of 98.9%; correlation between the replicate samples was also high (R = 0.96). In the 47 women, serum melatonin levels ranged from 0.6 to 62.6 pg/ml, with a median of 7.0 pg/ml.Our results suggest that it is possible to reliably measure melatonin in postmenopausal women in morning serum samples in large epidemiologic studies to evaluate the role of melatonin in cancer etiology or prognosis.

    View details for PubMedID 29641614

  • A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION Rand, K. A., Song, C., Dean, E., Serie, D. J., Curtin, K., Sheng, X., Hu, D., Huff, C. A., Bernal-Mizrachi, L., Tomasson, M. H., Ailawadhi, S., Singhal, S., Pawlish, K., Peters, E. S., Bock, C. H., Stram, A., Van den Berg, D. J., Edlund, C. K., Conti, D. V., Zimmerman, T., Hwang, A. E., Huntsman, S., Graff, J., Nooka, A., Kong, Y., Pregja, S. L., Berndt, S. I., Blot, W. J., Carpten, J., Casey, G., Chu, L., Diver, W. R., Stevens, V. L., Lieber, M. R., Goodman, P. J., Hennis, A. J., Hsing, A. W., Mehta, J., Kittles, R. A., Kolb, S., Klein, E. A., Leske, C., Murphy, A. B., Nemesure, B., Neslund-Dudas, C., Strom, S. S., Vij, R., Rybicki, B. A., Stanford, J. L., Signorello, L. B., Witte, J. S., Ambrosone, C. B., Bhatti, P., John, E. M., Bernstein, L., Zheng, W., Olshan, A. F., Hu, J. J., Ziegler, R. G., Nyante, S. J., Bandera, E. V., Birmann, B. M., Ingles, S. A., Press, M. F., Atanackovic, D., Glenn, M. J., Cannon-Albright, L. A., Jones, B., Tricot, G., Martin, T. G., Kumar, S. K., Wolf, J. L., Halverson, S. L., Rothman, N., Brooks-Wilson, A. R., Rajkumar, S. V., Kolonel, L. N., Chanock, S. J., Slager, S. L., Severson, R. K., Janakiraman, N., Terebelo, H. R., Brown, E. E., De Roos, A. J., Mohrbacher, A. F., Colditz, G. A., Giles, G. G., Spinelli, J. J., Chiu, B. C., Munshi, N. C., Anderson, K. C., Levy, J., Zonder, J. A., Orlowski, R. Z., Lonial, S., Camp, N. J., Vachon, C. M., Ziv, E., Stram, D. O., Hazelett, D. J., Haiman, C. A., Cozen, W. 2016; 25 (12): 1609-1618

    Abstract

    Genome-wide association studies (GWAS) in European populations have identified genetic risk variants associated with multiple myeloma.We performed association testing of common variation in eight regions in 1,318 patients with multiple myeloma and 1,480 controls of European ancestry and 1,305 patients with multiple myeloma and 7,078 controls of African ancestry and conducted a meta-analysis to localize the signals, with epigenetic annotation used to predict functionality.We found that variants in 7p15.3, 17p11.2, 22q13.1 were statistically significantly (P < 0.05) associated with multiple myeloma risk in persons of African ancestry and persons of European ancestry, and the variant in 3p22.1 was associated in European ancestry only. In a combined African ancestry-European ancestry meta-analysis, variation in five regions (2p23.3, 3p22.1, 7p15.3, 17p11.2, 22q13.1) was statistically significantly associated with multiple myeloma risk. In 3p22.1, the correlated variants clustered within the gene body of ULK4 Correlated variants in 7p15.3 clustered around an enhancer at the 3' end of the CDCA7L transcription termination site. A missense variant at 17p11.2 (rs34562254, Pro251Leu, OR, 1.32; P = 2.93 × 10(-7)) in TNFRSF13B encodes a lymphocyte-specific protein in the TNF receptor family that interacts with the NF-κB pathway. SNPs correlated with the index signal in 22q13.1 cluster around the promoter and enhancer regions of CBX7 CONCLUSIONS: We found that reported multiple myeloma susceptibility regions contain risk variants important across populations, supporting the use of multiple racial/ethnic groups with different underlying genetic architecture to enhance the localization and identification of putatively functional alleles.A subset of reported risk loci for multiple myeloma has consistent effects across populations and is likely to be functional. Cancer Epidemiol Biomarkers Prev; 25(12); 1609-18. ©2016 AACR.

    View details for PubMedID 27587788

  • Prostate Cancer Susceptibility in Men of African Ancestry at 8q24. Journal of the National Cancer Institute Han, Y., Rand, K. A., Hazelett, D. J., Ingles, S. A., Kittles, R. A., Strom, S. S., Rybicki, B. A., Nemesure, B., Isaacs, W. B., Stanford, J. L., Zheng, W., Schumacher, F. R., Berndt, S. I., Wang, Z., Xu, J., Rohland, N., Reich, D., Tandon, A., Pasaniuc, B., Allen, A., Quinque, D., Mallick, S., Notani, D., Rosenfeld, M. G., Jayani, R. S., Kolb, S., Gapstur, S. M., Stevens, V. L., Pettaway, C. A., Yeboah, E. D., Tettey, Y., Biritwum, R. B., Adjei, A. A., Tay, E., Truelove, A., Niwa, S., Chokkalingam, A. P., John, E. M., Murphy, A. B., Signorello, L. B., Carpten, J., Leske, M. C., Wu, S., Hennis, A. J., Neslund-Dudas, C., Hsing, A. W., Chu, L., Goodman, P. J., Klein, E. A., Zheng, S. L., Witte, J. S., Casey, G., Lubwama, A., Pooler, L. C., Sheng, X., Coetzee, G. A., Cook, M. B., Chanock, S. J., Stram, D. O., Watya, S., Blot, W. J., Conti, D. V., Henderson, B. E., Haiman, C. A. 2016; 108 (7)

    Abstract

    The 8q24 region harbors multiple risk variants for distinct cancers, including >8 for prostate cancer. In this study, we conducted fine mapping of the 8q24 risk region (127.8-128.8Mb) in search of novel associations with common and rare variation in 4853 prostate cancer case patients and 4678 control subjects of African ancestry. All statistical tests were two-sided. We identified three independent associations at P values of less than 5.00×10(-8), all of which were replicated in studies from Ghana and Uganda (combined sample = 5869 case patients, 5615 control subjects; rs114798100: risk allele frequency [RAF] = 0.04, per-allele odds ratio [OR] = 2.31, 95% confidence interval [CI] = 2.04 to 2.61, P = 2.38×10(-40); rs72725879: RAF = 0.33, OR = 1.37, 95% CI = 1.30 to 1.45, P = 3.04×10(-27); and rs111906932: RAF = 0.03, OR = 1.79, 95% CI = 1.53 to 2.08, P = 1.39×10(-13)). Risk variants rs114798100 and rs111906923 are only found in men of African ancestry, with rs111906923 representing a novel association signal. The three variants are located within or near a number of prostate cancer-associated long noncoding RNAs (lncRNAs), including PRNCR1, PCAT1, and PCAT2. These findings highlight ancestry-specific risk variation and implicate prostate-specific lncRNAs at the 8q24 prostate cancer susceptibility region.

    View details for DOI 10.1093/jnci/djv431

    View details for PubMedID 26823525

  • Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation NATURE COMMUNICATIONS Gusev, A., Shi, H., Kichaev, G., Pomerantz, M., Li, F., Long, H. W., Ingles, S. A., Kittles, R. A., Strom, S. S., Rybicki, B. A., Nemesure, B., Isaacs, W. B., Zheng, W., Pettaway, C. A., Yeboah, E. D., Tettey, Y., Biritwum, R. B., Adjei, A. A., Tay, E., Truelove, A., Niwa, S., Chokkalingam, A. P., John, E. M., Murphy, A. B., Signorello, L. B., Carpten, J., Leske, M. C., Wu, S., Hennis, A. J., Neslund-Dudas, C., Hsing, A. W., Chu, L., Goodman, P. J., Klein, E. A., Witte, J. S., Casey, G., Kaggwa, S., Cook, M. B., Stram, D. O., Blot, W. J., Eeles, R. A., Easton, D., Kote-Jarai, Z., Al Olama, A. A., Benlloch, S., Muir, K., Giles, G. G., Southey, M. C., FitzGerald, L. M., Gronberg, H., Wiklund, F., Aly, M., Henderson, B. E., Schleutker, J., Wahlfors, T., Tammela, T. L., Nordestgaard, B. G., Key, T. J., Travis, R. C., Neal, D. E., Donovan, J. L., Hamdy, F. C., Pharoah, P., Pashayan, N., Khaw, K., Stanford, J. L., Thibodeau, S. N., McDonnell, S. K., Schaid, D. J., Maier, C., Vogel, W., Luedeke, M., Herkommer, K., Kibel, A. S., Cybulski, C., Wokolorczyk, D., Kluzniak, W., Cannon-Albright, L., Teerlink, C., Brenner, H., Dieffenbach, A. K., Arndt, V., Park, J. Y., Sellers, T. A., Lin, H., Slavov, C., Kaneva, R., Mitev, V., Batra, J., Spurdle, A., Clements, J. A., Teixeira, M. R., Pandha, H., Michael, A., Paulo, P., Maia, S., Kierzek, A., Conti, D. V., Albanes, D., Berg, C., Berndt, S. I., Campa, D., Crawford, E. D., Diver, W. R., Gapstur, S. M., Gaziano, J. M., Giovannucci, E., Hoover, R., Hunter, D. J., Johansson, M., Kraft, P., Le Marchand, L., Lindstrom, S., Navarro, C., Overvad, K., Riboli, E., Siddiq, A., Stevens, V. L., Trichopoulos, D., Vineis, P., Yeager, M., Trynka, G., Raychaudhuri, S., Schumacher, F. R., Price, A. L., Freedman, M. L., Haiman, C. A., Pasaniuc, B., Cook, M., Guy, M., Govindasami, K., Leongamornlert, D., Sawyer, E. J., Wilkinson, R., Saunders, E. J., Tymrakiewicz, M., Dadaev, T., Morgan, A., Fisher, C., Hazel, S., Livni, N., Lophatananon, A., Pedersen, J., Hopper, J. L., Adolfson, J., Stattin, P., Johansson, J., Cavalli-Bjoerkman, C., Karlsson, A., Broms, M., Auvinen, A., Kujala, P., Maeaettaenen, L., Murtola, T., Taari, K., Weischer, M., Nielsen, S. F., Klarskov, P., Roder, A., Iversen, P., Wallinder, H., Gustafsson, S., Cox, A., Brown, P., George, A., Marsden, G., Lane, A., Davis, M., Zheng, W., Signorello, L. B., Blot, W. J., Tillmans, L., Riska, S., Wang, L., Rinckleb, A., Lubiski, J., Stegmaier, C., Pow-Sang, J., Park, H., Radlein, S., Rincon, M., Haley, J., Zachariah, B., Kachakova, D., Popov, E., Mitkova, A., Vlahova, A., Dikov, T., Christova, S., Heathcote, P., Wood, G., Malone, G., Saunders, P., Eckert, A., Yeadon, T., Kerr, K., Collins, A., Turner, M., Srinivasan, S., Kedda, M., Alexander, K., Omara, T., Wu, H., Henrique, R., Pinto, P., Santos, J., Barros-Silva, J. 2016; 7

    Abstract

    Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.

    View details for DOI 10.1038/ncomms10979

    View details for PubMedID 27052111

  • Sleep Duration and Cancer in the NIH-AARP Diet and Health Study Cohort. PloS one Gu, F., Xiao, Q., Chu, L. W., Yu, K., Matthews, C. E., Hsing, A. W., Caporaso, N. E. 2016; 11 (9)

    Abstract

    Very few studies have examined sleep duration in relation to cancer incidence with the exception of breast cancer.We assessed the associations between sleep duration and incidences of total and 18 site-specific cancers in the NIH-AARP Health and Diet Study cohort, with 173,327 men and 123,858 women aged 51-72 years at baseline. Self-reported sleep duration categories were assessed via questionnaire. We used multivariable Cox proportional hazards regression to estimate hazard ratios (HR) and 95% confidence intervals (CI), using 7-8 hours/night as the reference.We observed a significantly increased risk of stomach cancer among male short sleepers (multivariable HR5-6 vs. 7-8 hours = 1.29; 95%CI: 1.05, 1.59; Ptrend = 0.03). We also observed suggestive associations in either short or long sleepers, which did not reach overall significance (Ptrend >0.05), including increased risks in male short sleepers for cancers of head and neck (HR<5vs.7-8 hours = 1.39; 95%CI:1.00-1.95), bladder (HR5-6vs.7-8 hours = 1.10; 95%CI:1.00-1.20), thyroid (HR<5 vs. 7-8 hours = 2.30; 95%CI:1.06, 5.02), Non-Hodgkin Lymphoma (NHL) (HR5-6vs.7-8 hours = 1.17; 95%CI:1.02-1.33), and myeloma (HR<5vs.7-8 hours = 2.06; 95%CI:1.20-3.51). In women, the suggestive associations include a decreased total cancer risk (HR<5vs.7-8 hours = 0.9; 95%CI:0.83-0.99) and breast cancer risk (HR<5vs.7-8 hours = 0.84; 95%CI:0.71-0.98) among short sleepers. A decreased ovarian cancer risk (HR≥ 9 vs. 7-8 hours = 0.50; 95%CI:0.26-0.97) and an increased NHL risk (HR≥ 9 vs. 7-8 hours = 1.45; 95%CI:1.00-2.11) were observed among long sleepers.In an older population, we observed an increased stomach cancer risk in male short sleepers and suggestive associations with short or long sleep duration for many cancer risks in both genders.

    View details for DOI 10.1371/journal.pone.0161561

    View details for PubMedID 27611440

  • Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human molecular genetics Han, Y., Hazelett, D. J., Wiklund, F., Schumacher, F. R., Stram, D. O., Berndt, S. I., Wang, Z., Rand, K. A., Hoover, R. N., Machiela, M. J., Yeager, M., Burdette, L., Chung, C. C., Hutchinson, A., Yu, K., Xu, J., Travis, R. C., Key, T. J., Siddiq, A., Canzian, F., Takahashi, A., Kubo, M., Stanford, J. L., Kolb, S., Gapstur, S. M., Diver, W. R., Stevens, V. L., Strom, S. S., Pettaway, C. A., Al Olama, A. A., Kote-Jarai, Z., Eeles, R. A., Yeboah, E. D., Tettey, Y., Biritwum, R. B., Adjei, A. A., Tay, E., Truelove, A., Niwa, S., Chokkalingam, A. P., Isaacs, W. B., Chen, C., Lindstrom, S., Le Marchand, L., Giovannucci, E. L., Pomerantz, M., Long, H., Li, F., Ma, J., Stampfer, M., John, E. M., Ingles, S. A., Kittles, R. A., Murphy, A. B., Blot, W. J., Signorello, L. B., Zheng, W., Albanes, D., Virtamo, J., Weinstein, S., Nemesure, B., Carpten, J., Leske, M. C., Wu, S., Hennis, A. J., Rybicki, B. A., Neslund-Dudas, C., Hsing, A. W., Chu, L., Goodman, P. J., Klein, E. A., Zheng, S. L., Witte, J. S., Casey, G., Riboli, E., Li, Q., Freedman, M. L., Hunter, D. J., Gronberg, H., Cook, M. B., Nakagawa, H., Kraft, P., Chanock, S. J., Easton, D. F., Henderson, B. E., Coetzee, G. A., Conti, D. V., Haiman, C. A. 2015; 24 (19): 5603-5618

    Abstract

    Interpretation of biological mechanisms underlying genetic risk associations for prostate cancer is complicated by the relatively large number of risk variants (n = 100) and the thousands of surrogate SNPs in linkage disequilibrium. Here, we combined three distinct approaches: multiethnic fine-mapping, putative functional annotation (based upon epigenetic data and genome-encoded features), and expression quantitative trait loci (eQTL) analyses, in an attempt to reduce this complexity. We examined 67 risk regions using genotyping and imputation-based fine-mapping in populations of European (cases/controls: 8600/6946), African (cases/controls: 5327/5136), Japanese (cases/controls: 2563/4391) and Latino (cases/controls: 1034/1046) ancestry. Markers at 55 regions passed a region-specific significance threshold (P-value cutoff range: 3.9 × 10(-4)-5.6 × 10(-3)) and in 30 regions we identified markers that were more significantly associated with risk than the previously reported variants in the multiethnic sample. Novel secondary signals (P < 5.0 × 10(-6)) were also detected in two regions (rs13062436/3q21 and rs17181170/3p12). Among 666 variants in the 55 regions with P-values within one order of magnitude of the most-associated marker, 193 variants (29%) in 48 regions overlapped with epigenetic or other putative functional marks. In 11 of the 55 regions, cis-eQTLs were detected with nearby genes. For 12 of the 55 regions (22%), the most significant region-specific, prostate-cancer associated variant represented the strongest candidate functional variant based on our annotations; the number of regions increased to 20 (36%) and 27 (49%) when examining the 2 and 3 most significantly associated variants in each region, respectively. These results have prioritized subsets of candidate variants for downstream functional evaluation.

    View details for DOI 10.1093/hmg/ddv269

    View details for PubMedID 26162851

  • Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults PLOS ONE Chen, F., He, J., Zhang, J., Chen, G. K., Thomas, V., Ambrosone, C. B., Bandera, E. V., Berndt, S. I., Bernstein, L., Blot, W. J., Cai, Q., Carpten, J., Casey, G., Chanock, S. J., Cheng, I., Chu, L., Deming, S. L., Driver, W. R., Goodman, P., Hayes, R. B., Hennis, A. J., Hsing, A. W., Hu, J. J., Ingles, S. A., John, E. M., Kittles, R. A., Kolb, S., Leske, M. C., Millikan, R. C., Monroe, K. R., Murphy, A., Nemesure, B., Neslund-Dudas, C., Nyante, S., Ostrander, E. A., Press, M. F., Rodriguez-Gil, J. L., Rybicki, B. A., Schumacher, F., Stanford, J. L., Signorello, L. B., Strom, S. S., Stevens, V., Van Den Berg, D., Wang, Z., Witte, J. S., Wu, S., Yamamura, Y., Zheng, W., Ziegler, R. G., Stram, A. H., Kolonel, L. N., Le Marchand, L., Henderson, B. E., Haiman, C. A., Stram, D. O. 2015; 10 (6)

    Abstract

    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious.

    View details for DOI 10.1371/journal.pone.0131106

    View details for Web of Science ID 000358151300033

    View details for PubMedCentralID PMC4488332

  • Finasteride Concentrations and Prostate Cancer Risk: Results from the Prostate Cancer Prevention Trial PLOS ONE Chau, C. H., Price, D. K., Till, C., Goodman, P. J., Chen, X., Leach, R. J., Johnson-Pais, T. L., Hsing, A. W., Hoque, A., Tangen, C. M., Chu, L., Parnes, H. L., Schenk, J. M., Reichardt, J. K., Thompson, I. M., Figg, W. D. 2015; 10 (5)

    Abstract

    In the Prostate Cancer Prevention Trial (PCPT), finasteride reduced the risk of prostate cancer by 25%, even though high-grade prostate cancer was more common in the finasteride group. However, it remains to be determined whether finasteride concentrations may affect prostate cancer risk. In this study, we examined the association between serum finasteride concentrations and the risk of prostate cancer in the treatment arm of the PCPT and determined factors involved in modifying drug concentrations.Data for this nested case-control study are from the PCPT. Cases were drawn from men with biopsy-proven prostate cancer and matched controls. Finasteride concentrations were measured using a liquid chromatography-mass spectrometry validated assay. The association of serum finasteride concentrations with prostate cancer risk was determined by logistic regression. We also examine whether polymorphisms in the enzyme target and metabolism genes of finasteride are related to drug concentrations using linear regression.Among men with detectable finasteride concentrations, there was no association between finasteride concentrations and prostate cancer risk, low-grade or high-grade, when finasteride concentration was analyzed as a continuous variable or categorized by cutoff points. Since there was no concentration-dependent effect on prostate cancer, any exposure to finasteride intake may reduce prostate cancer risk. Of the twenty-seven SNPs assessed in the enzyme target and metabolism pathway, five SNPs in two genes, CYP3A4 (rs2242480; rs4646437; rs4986910), and CYP3A5 (rs15524; rs776746) were significantly associated with modifying finasteride concentrations. These results suggest that finasteride exposure may reduce prostate cancer risk and finasteride concentrations are affected by genetic variations in genes responsible for altering its metabolism pathway.ClinicalTrials.gov NCT00288106.

    View details for DOI 10.1371/journal.pone.0126672

    View details for Web of Science ID 000356768100139

    View details for PubMedCentralID PMC4425512

  • Generalizability of established prostate cancer risk variants in men of African ancestry INTERNATIONAL JOURNAL OF CANCER Han, Y., Signorello, L. B., Strom, S. S., Kittles, R. A., Rybicki, B. A., Stanford, J. L., Goodman, P. J., Berndt, S. I., Carpten, J., Casey, G., Chu, L., Conti, D. V., Rand, K. A., Diver, W. R., Hennis, A. J., John, E. M., Kibel, A. S., Klein, E. A., Kolb, S., Le Marchand, L., Leske, M. C., Murphy, A. B., Neslund-Dudas, C., Park, J. Y., Pettaway, C., Rebbeck, T. R., Gapstur, S. M., Zheng, S. L., Wu, S., Witte, J. S., Xu, J., Isaacs, W., Ingles, S. A., Hsing, A., Easton, D. F., Eeles, R. A., Schumacher, F. R., Chanock, S., Nemesure, B., Blot, W. J., Stram, D. O., Henderson, B. E., Haiman, C. A. 2015; 136 (5): 1210-1217

    Abstract

    Genome-wide association studies have identified more than 80 risk variants for prostate cancer, mainly in European or Asian populations. The generalizability of these variants in other racial/ethnic populations needs to be understood before the loci can be used widely in risk modeling. In our study, we examined 82 previously reported risk variants in 4,853 prostate cancer cases and 4,678 controls of African ancestry. We performed association testing for each variant using logistic regression adjusted for age, study and global ancestry. Of the 82 known risk variants, 68 (83%) had effects that were directionally consistent in their association with prostate cancer risk and 30 (37%) were significantly associated with risk at p < 0.05, with the most statistically significant variants being rs116041037 (p = 3.7 × 10(-26) ) and rs6983561 (p = 1.1 × 10(-16) ) at 8q24, as well as rs7210100 (p = 5.4 × 10(-8) ) at 17q21. By exploring each locus in search of better markers, the number of variants that captured risk in men of African ancestry (p < 0.05) increased from 30 (37%) to 44 (54%). An aggregate score comprised of these 44 markers was strongly associated with prostate cancer risk [per-allele odds ratio (OR) = 1.12, p = 7.3 × 10(-98) ]. In summary, the consistent directions of effects for the vast majority of variants in men of African ancestry indicate common functional alleles that are shared across populations. Further exploration of these susceptibility loci is needed to identify the underlying biologically relevant variants to improve prostate cancer risk modeling in populations of African ancestry.

    View details for DOI 10.1002/ijc.29066

    View details for Web of Science ID 000346350500046

    View details for PubMedCentralID PMC4268262

  • Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults. PloS one Chen, F., He, J., Zhang, J., Chen, G. K., Thomas, V., Ambrosone, C. B., Bandera, E. V., Berndt, S. I., Bernstein, L., Blot, W. J., Cai, Q., Carpten, J., Casey, G., Chanock, S. J., Cheng, I., Chu, L., Deming, S. L., Driver, W. R., Goodman, P., Hayes, R. B., Hennis, A. J., Hsing, A. W., Hu, J. J., Ingles, S. A., John, E. M., Kittles, R. A., Kolb, S., Leske, M. C., Millikan, R. C., Monroe, K. R., Murphy, A., Nemesure, B., Neslund-Dudas, C., Nyante, S., Ostrander, E. A., Press, M. F., Rodriguez-Gil, J. L., Rybicki, B. A., Schumacher, F., Stanford, J. L., Signorello, L. B., Strom, S. S., Stevens, V., Van Den Berg, D., Wang, Z., Witte, J. S., Wu, S., Yamamura, Y., Zheng, W., Ziegler, R. G., Stram, A. H., Kolonel, L. N., Le Marchand, L., Henderson, B. E., Haiman, C. A., Stram, D. O. 2015; 10 (6)

    Abstract

    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious.

    View details for DOI 10.1371/journal.pone.0131106

    View details for PubMedID 26125186

  • Non-Steroidal Anti-Inflammatory Drugs Use Is Associated with Reduced Risk of Inflammation-Associated Cancers: NIH-AARP Study PLOS ONE Shebl, F. M., Hsing, A. W., Park, Y., Hollenbeck, A. R., Chu, L. W., Meyer, T. E., Koshiol, J. 2014; 9 (12)

    Abstract

    Chronic inflammation has been linked to cancers, and use of non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with reduced risk of several cancers. To further refine the magnitude of NSAID-related associations, in particular for cancers related to inflammation, such as alcohol-, infection-, obesity-, and smoking-related cancers, as well as for less common cancers, we evaluated the use of NSAIDs and cancer risk in a very large cohort. We used propensity scores to account for potential selection bias and hypothesized that NSAID use is associated with decreased cancer incidence.We conducted a prospective study among 314,522 participants in the NIH-AARP Diet and Health Study. Individuals who completed the lifestyle questionnaire, which included NSAID use, in 1996-1997 were followed through 2006. Information on cancer incidence was ascertained by linking to cancer registries and vital status databases.During 2,715,994 person-years of follow-up (median 10.1 person-years), there were 51,894 incident cancers. Compared with non-users of NSAIDs, individuals who reported use in the 12 months prior to interview had a significantly lower risk of all inflammation-related cancer, alcohol-related, infection-related, obesity-related, and smoking-related cancers [hazard ratio (HR) (95% CI)) 0.90 (0.87-0.93), 0.80 (0.74-0.85), 0.82 (0.78-0.87), 0.88 (0.84-0.92), and 0.88 (0.85-0.92) respectively)].After accounting for potential selection bias, our data showed an inverse association between NSAID use and alcohol-related, infection-related, obesity-related, and smoking-related cancers and support the hypothesis that inflammation is related to an increased risk of certain cancers.

    View details for DOI 10.1371/journal.pone.0114633

    View details for Web of Science ID 000347119100013

    View details for PubMedCentralID PMC4281259

  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human molecular genetics Wang, Z., Zhu, B., Zhang, M., Parikh, H., Jia, J., Chung, C. C., Sampson, J. N., Hoskins, J. W., Hutchinson, A., Burdette, L., Ibrahim, A., Hautman, C., Raj, P. S., Abnet, C. C., Adjei, A. A., Ahlbom, A., Albanes, D., Allen, N. E., Ambrosone, C. B., Aldrich, M., Amiano, P., Amos, C., Andersson, U., Andriole, G., Andrulis, I. L., Arici, C., Arslan, A. A., Austin, M. A., Baris, D., Barkauskas, D. A., Bassig, B. A., Beane Freeman, L. E., Berg, C. D., Berndt, S. I., Bertazzi, P. A., Biritwum, R. B., Black, A., Blot, W., Boeing, H., Boffetta, P., Bolton, K., Boutron-Ruault, M., Bracci, P. M., Brennan, P., Brinton, L. A., Brotzman, M., Bueno-de-Mesquita, H. B., Buring, J. E., Butler, M. A., Cai, Q., Cancel-Tassin, G., Canzian, F., Cao, G., Caporaso, N. E., Carrato, A., Carreon, T., Carta, A., Chang, G., Chang, I., Chang-Claude, J., Che, X., Chen, C., Chen, C., Chen, C., Chen, C., Chen, K., Chen, Y., Chokkalingam, A. P., Chu, L. W., Clavel-Chapelon, F., Colditz, G. A., Colt, J. S., Conti, D., Cook, M. B., Cortessis, V. K., Crawford, E. D., Cussenot, O., Davis, F. G., De Vivo, I., Deng, X., Ding, T., Dinney, C. P., Di Stefano, A. L., Diver, W. R., Duell, E. J., Elena, J. W., Fan, J., Feigelson, H. S., Feychting, M., Figueroa, J. D., Flanagan, A. M., Fraumeni, J. F., Freedman, N. D., Fridley, B. L., Fuchs, C. S., Gago-Dominguez, M., Gallinger, S., Gao, Y., Gapstur, S. M., Garcia-Closas, M., Garcia-Closas, R., Gastier-Foster, J. M., Gaziano, J. M., Gerhard, D. S., Giffen, C. A., Giles, G. G., Gillanders, E. M., Giovannucci, E. L., Goggins, M., Gokgoz, N., Goldstein, A. M., Gonzalez, C., Gorlick, R., Greene, M. H., Gross, M., Grossman, H. B., Grubb, R., Gu, J., Guan, P., Haiman, C. A., Hallmans, G., Hankinson, S. E., Harris, C. C., Hartge, P., Hattinger, C., Hayes, R. B., He, Q., Helman, L., Henderson, B. E., Henriksson, R., Hoffman-Bolton, J., Hohensee, C., Holly, E. A., Hong, Y., Hoover, R. N., Hosgood, H. D., Hsiao, C., Hsing, A. W., Hsiung, C. A., Hu, N., Hu, W., Hu, Z., Huang, M., Hunter, D. J., Inskip, P. D., Ito, H., Jacobs, E. J., Jacobs, K. B., Jenab, M., Ji, B., Johansen, C., Johansson, M., Johnson, A., Kaaks, R., Kamat, A. M., Kamineni, A., Karagas, M., Khanna, C., Khaw, K., Kim, C., Kim, I., Kim, J. H., Kim, Y. H., Kim, Y., Kim, Y. T., Kang, C. H., Jung, Y. J., Kitahara, C. M., Klein, A. P., Klein, R., Kogevinas, M., Koh, W., Kohno, T., Kolonel, L. N., Kooperberg, C., Kratz, C. P., Krogh, V., Kunitoh, H., Kurtz, R. C., Kurucu, N., Lan, Q., Lathrop, M., Lau, C. C., Lecanda, F., Lee, K., Lee, M. P., Le Marchand, L., Lerner, S. P., Li, D., Liao, L. M., Lim, W., Lin, D., Lin, J., Lindstrom, S., Linet, M. S., Lissowska, J., Liu, J., Ljungberg, B., Lloreta, J., Lu, D., Ma, J., Malats, N., Mannisto, S., Marina, N., Mastrangelo, G., Matsuo, K., McGlynn, K. A., McKean-Cowdin, R., McNeill, L. H., Mcwilliams, R. R., Melin, B. S., Meltzer, P. S., Mensah, J. E., Miao, X., Michaud, D. S., Mondul, A. M., Moore, L. E., Muir, K., Niwa, S., Olson, S. H., Orr, N., Panico, S., Park, J. Y., Patel, A. V., Patino-Garcia, A., Pavanello, S., Peeters, P. H., Peplonska, B., Peters, U., Petersen, G. M., Picci, P., Pike, M. C., Porru, S., Prescott, J., Pu, X., Purdue, M. P., Qiao, Y., Rajaraman, P., Riboli, E., Risch, H. A., Rodabough, R. J., Rothman, N., Ruder, A. M., Ryu, J., Sanson, M., Schned, A., Schumacher, F. R., Schwartz, A. G., Schwartz, K. L., Schwenn, M., Scotlandi, K., Seow, A., Serra, C., Serra, M., Sesso, H. D., Severi, G., Shen, H., Shen, M., Shete, S., Shiraishi, K., Shu, X., Siddiq, A., Sierrasesumaga, L., Sierri, S., Loon Sihoe, A. D., Silverman, D. T., Simon, M., Southey, M. C., Spector, L., Spitz, M., Stampfer, M., Stattin, P., Stern, M. C., Stevens, V. L., Stolzenberg-Solomon, R. Z., Stram, D. O., Strom, S. S., Su, W., Sund, M., Sung, S. W., Swerdlow, A., Tan, W., Tanaka, H., Tang, W., Tang, Z., Tardon, A., Tay, E., Taylor, P. R., Tettey, Y., Thomas, D. M., Tirabosco, R., Tjonneland, A., Tobias, G. S., Toro, J. R., Travis, R. C., Trichopoulos, D., Troisi, R., Truelove, A., Tsai, Y., Tucker, M. A., Tumino, R., Van Den Berg, D., Van Den Eeden, S. K., Vermeulen, R., Vineis, P., Visvanathan, K., Vogel, U., Wang, C., Wang, C., Wang, J., Wang, S. S., Weiderpass, E., Weinstein, S. J., Wentzensen, N., Wheeler, W., White, E., Wiencke, J. K., Wolk, A., Wolpin, B. M., Wong, M. P., Wrensch, M., Wu, C., Wu, T., Wu, X., Wu, Y., Wunder, J. S., Xiang, Y., Xu, J., Yang, H. P., Yang, P., Yatabe, Y., Ye, Y., Yeboah, E. D., Yin, Z., Ying, C., Yu, C., Yu, K., Yuan, J., Zanetti, K. A., Zeleniuch-Jacquotte, A., Zheng, W., Zhou, B., Mirabello, L., Savage, S. A., Kraft, P., Chanock, S. J., Yeager, M., Landi, M. T., Shi, J., Chatterjee, N., Amundadottir, L. T. 2014; 23 (24): 6616-6633

    Abstract

    Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.

    View details for DOI 10.1093/hmg/ddu363

    View details for PubMedID 25027329

  • Variants in motilin, somatostatin and their receptor genes and risk of biliary tract cancers and stones in Shanghai, China. Meta gene Xu, H., Hsing, A. W., Koshiol, J., Chu, L. W., Cheng, J., Gao, J., Tan, Y., Wang, B., Shen, M., Gao, Y. 2014; 2: 418-426

    Abstract

    Altered motility of the gallbladder can result in gallstone and cholecystitis, which are important risk factor for biliary tract cancer. Motilin (MLN) and somatostatin (SST) are known important modulators of gallbladder motility. To determine whether genetic variants in motilin, somatostatin, and their receptor genes are associated with the risk of biliary tract cancers and stones, nine tag-SNPs were determined in 439 biliary tract cancer cases (253 gallbladder, 133 extrahepatic bile duct and 53 ampulla of Vater cancer cases), 429 biliary stone cases, and 447 population controls in a population-based case-control study in Shanghai, China. We found that subjects with the MLNR rs9568169 AA genotype and SSTR5 rs169068 CC genotype were significantly associated with risk of extrahepatic bile duct cancer (OR =0.49, 95% CI: 0.27-0.89; OR =2.40, 95% CI: 1.13-5.13) compared to the major genotypes. MLN rs2281820 CT and rs3793079 AT genotypes had significantly increased risks of gallstones (OR =1.52, 95% CI: 1.06-2.18; OR =1.64, 95% CI: 1.20-2.25) compared to TT genotypes. Besides, Haplotype analysis showed that MLN T-T-T haplotype (rs2281820-rs3793079-rs2281819) had a non-significantly elevated risk of gallstone (OR =1.30, 95% CI: 0.91-1.86) compared with C-A-A haplotype. To the best of our knowledge, this is the first study to report an association between genetic polymorphisms in MLN, MLNR and their receptor genes and risk of biliary tract cancers and stones.

    View details for PubMedID 24999450

    View details for PubMedCentralID PMC4080205

  • Sex Steroid Hormone Metabolism in Relation to Risk of Aggressive Prostate Cancer CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION Black, A., Pinsky, P. F., Grubb, R. L., Falk, R. T., Hsing, A. W., Chu, L., Meyer, T., Veenstra, T. D., Xu, X., Yu, K., Ziegler, R. G., Brinton, L. A., Hoover, R. N., Cook, M. B. 2014; 23 (11): 2374-2382

    Abstract

    The combined action of androgens and estrogens-specifically their balance-may play a role in prostate carcinogenesis, but existing evidence is sparse and inconsistent. We investigated associations between serum sex steroid hormones, including estrogen metabolites, and risk of aggressive prostate cancer.In a case-control study nested within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial cohort, we measured serum estrone, estradiol, and 13 estrogen metabolites, in the 2-, 4-, or 16-hydroxylation pathways, using an LC/MS-MS assay. Cases (n = 195) were non-Hispanic white men ages 55 to 70 years when diagnosed with aggressive prostate cancer (stage III or IV and/or Gleason ≥7). Controls (n = 195) were non-Hispanic white men without prostate cancer who were frequency matched to cases by age and year at blood draw, and time since baseline screen. Only men with serum testosterone and sex hormone-binding globulin measured previously were eligible. Logistic regression models were used to estimate ORs and 95% confidence intervals (95% CI).Risk of aggressive prostate cancer was strongly inversely associated with estradiol:testosterone ratio (OR4th quartile vs. 1st = 0.27; 95% CI, 0.12-0.59, Ptrend = 0.003) and positively associated with 2:16α-hydroxyestrone ratio (OR4th quartile vs. 1st = 2.44; 95% CI, 1.34-4.45, Ptrend = 0.001). Individual estrogen metabolites were unrelated to risk.Our findings suggest that sex steroid hormones, specifically the estrogen-androgen balance, may be important in the development of aggressive prostate cancer.Improved understanding of the hormonal etiology of prostate cancer is critical for prevention and therapeutic interventions.

    View details for DOI 10.1158/1055-9965.EPI-14-0700

    View details for Web of Science ID 000345279600020

    View details for PubMedCentralID PMC4221438

  • A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer NATURE GENETICS Al Olama, A. A., Kote-Jarai, Z., Berndt, S. I., Conti, D. V., Schumacher, F., Han, Y., Benlloch, S., Hazelett, D. J., Wang, Z., Saunders, E., Leongamornlert, D., Lindstrom, S., Jugurnauth-Little, S., Dadaev, T., Tymrakiewicz, M., Stram, D. O., Rand, K., Wan, P., Stram, A., Sheng, X., Pooler, L. C., Park, K., Xia, L., Tyrer, J., Kolonel, L. N., Le Marchand, L., Hoover, R. N., Machiela, M. J., Yeager, M., Burdette, L., Chung, C. C., Hutchinson, A., Yu, K., Goh, C., Ahmed, M., Govindasami, K., Guy, M., Tammela, T. L., Auvinen, A., Wahlfors, T., Schleutker, J., Visakorpi, T., Leinonen, K. A., Xu, J., Aly, M., Donovan, J., Travis, R. C., Key, T. J., Siddiq, A., Canzian, F., Khaw, K., Takahashi, A., Kubo, M., Pharoah, P., Pashayan, N., Weischer, M., Nordestgaard, B. G., Nielsen, S. F., Klarskov, P., Roder, M. A., Iversen, P., Thibodeau, S. N., McDonnell, S. K., Schaid, D. J., Stanford, J. L., Kolb, S., Holt, S., Knudsen, B., Coll, A. H., Gapstur, S. M., Diver, W. R., Stevens, V. L., Maier, C., Luedeke, M., Herkommer, K., Rinckleb, A. E., Strom, S. S., Pettaway, C., Yeboah, E. D., Tettey, Y., Biritwum, R. B., Adjei, A. A., Tay, E., Truelove, A., Niwa, S., Choklcalingam, A. P., Cannon-Albright, L., Cybulski, C., Wokolorczyk, D., Kluzniak, W., Park, J., Sellers, T., Lin, H., Isaacs, W. B., Partin, A. W., Brenner, H., Dieffenbach, A. K., Stegmaier, C., Chen, C., Giovannucci, E. L., Ma, J., Stampfer, M., Penney, K. L., Mucci, L., John, E. M., Ingles, S. A., Kittles, R. A., Murphy, A. B., Pandha, H., Michael, A., Kierzek, A. M., Blot, W., Signorello, L. B., Zheng, W., Albanes, D., Virtamo, J., Weinstein, S., Nemesure, B., Carpten, J., Leske, C., Wu, S., Hennis, A., Kibel, A. S., Rybicki, B. A., Neslund-Dudas, C., Hsing, A. W., Chu, L., Goodman, P. J., Klein, E. A., Zheng, S. L., Batra, J., Clements, J., Spurdle, A., Teixeira, M. R., Paulo, P., Maia, S., Slavov, C., Kaneva, R., Mitev, V., Witte, J. S., Casey, G., Gillanders, E. M., Seminara, D., Riboli, E., Hamdy, F. C., Coetzee, G. A., Li, Q., Freedman, M. L., Hunter, D. J., Muir, K., Gronberg, H., Nea, D. E., Southey, M., Giles, G. G., Severi, G., Cook, M. B., Nakagawa, H., Wiklund, F., Kraft, P., Chanock, S. J., Henderson, B. E., Easton, D. F., Eeles, R. A., Haiman, C. A. 2014; 46 (10): 1103-1109

    Abstract

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer cases and 43,737 controls from studies in populations of European, African, Japanese and Latino ancestry. Twenty-three new susceptibility loci were identified at association P < 5 × 10(-8); 15 variants were identified among men of European ancestry, 7 were identified in multi-ancestry analyses and 1 was associated with early-onset prostate cancer. These 23 variants, in combination with known prostate cancer risk variants, explain 33% of the familial risk for this disease in European-ancestry populations. These findings provide new regions for investigation into the pathogenesis of prostate cancer and demonstrate the usefulness of combining ancestrally diverse populations to discover risk loci for disease.

    View details for DOI 10.1038/ng.3094

    View details for Web of Science ID 000342554100013

  • High Prevalence of Screen Detected Prostate Cancer in West Africans: Implications for Racial Disparity of Prostate Cancer JOURNAL OF UROLOGY Hsing, A. W., Yeboah, E., Biritwum, R., Tettey, Y., De Marzo, A. M., Adjei, A., Netto, G. J., Yu, K., Li, Y., Chokkalingam, A. P., Chu, L. W., Chia, D., Partin, A., Thompson, I. M., Quraishi, S. M., Niwa, S., Tarone, R., Hoover, R. N. 2014; 192 (3): 730-735

    Abstract

    To our knowledge the reasons for the high rates of prostate cancer in black American men are unknown. Genetic and lifestyle factors have been implicated. Better understanding of prostate cancer rates in West African men would help clarify why black American men have such high rates since the groups share genetic ancestry and yet have different lifestyles and screening practices. To estimate the prostate cancer burden in West African men we performed a population based screening study with biopsy confirmation in Ghana.We randomly selected 1,037 healthy men 50 to 74 years old from Accra, Ghana for prostate cancer screening with prostate specific antigen testing and digital rectal examination. Men with a positive screen result (positive digital rectal examination or prostate specific antigen greater than 2.5 ng/ml) underwent transrectal ultrasound guided biopsies.Of the 1,037 men 154 (14.9%) had a positive digital rectal examination and 272 (26.2%) had prostate specific antigen greater than 2.5 ng/ml, including 166 with prostate specific antigen greater than 4.0 ng/ml. A total of 352 men (33.9%) had a positive screen by prostate specific antigen or digital rectal examination and 307 (87%) underwent biopsy. Of these men 73 were confirmed to have prostate cancer, yielding a 7.0% screen detected prostate cancer prevalence (65 patients), including 5.8% with prostate specific antigen greater than 4.0 ng/ml.In this relatively unscreened population in Africa the screen detected prostate cancer prevalence is high, suggesting a possible role of genetics in prostate cancer etiology and the disparity in prostate cancer risk between black and white American men. Further studies are needed to confirm the high prostate cancer burden in African men and the role of genetics in prostate cancer etiology.

    View details for DOI 10.1016/j.juro.2014.04.017

    View details for Web of Science ID 000342105600028

    View details for PubMedCentralID PMC4332806

  • A genome-wide association study of prostate cancer in West African men HUMAN GENETICS Cook, M. B., Wang, Z., Yeboah, E. D., Tettey, Y., Biritwum, R. B., Adjei, A. A., Tay, E., Truelove, A., Niwa, S., Chung, C. C., Chokkalingam, A. P., Chu, L. W., Yeager, M., Hutchinson, A., Yu, K., Rand, K. A., Haiman, C. A., Hoover, R. N., Hsing, A. W., Chanock, S. J. 2014; 133 (5): 509-521

    Abstract

    Age-adjusted mortality rates for prostate cancer are higher for African-American men compared with those of European ancestry. Recent data suggest that West African men also have elevated risk for prostate cancer relative to European men. Genetic susceptibility to prostate cancer could account for part of this difference. We conducted a genome-wide association study (GWAS) of prostate cancer in West African men in the Ghana Prostate Study. Association testing was performed using multivariable logistic regression adjusted for age and genetic ancestry for 474 prostate cancer cases and 458 population-based controls on the Illumina HumanOmni-5 Quad BeadChip. The most promising association was at 10p14 within an intron of a long non-coding RNA (lncRNA RP11-543F8.2) 360 kb centromeric of GATA3 (p = 1.29E-7). In sub-analyses, SNPs at 5q31.3 were associated with high Gleason score (≥7) cancers, the strongest of which was a missense SNP in PCDHA1 (rs34575154, p = 3.66E-8), and SNPs at Xq28 (rs985081, p = 8.66E-9) and 6q21 (rs2185710, p = 5.95E-8) were associated with low Gleason score (<7) cancers. We sought to validate our findings in silico in the African Ancestry Prostate Cancer GWAS Consortium, but only one SNP, at 10p14, replicated at p < 0.05. Of the 90 prostate cancer loci reported from studies of men of European, Asian or African-American ancestry, we were able to test 81 in the Ghana Prostate Study, and 10 of these replicated at p < 0.05. Further genetic studies of prostate cancer in West African men are needed to confirm our promising susceptibility loci.

    View details for DOI 10.1007/s00439-013-1387-z

    View details for Web of Science ID 000334519900004

    View details for PubMedCentralID PMC3988225

  • Prospective evaluation of serum sarcosine and risk of prostate cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial CARCINOGENESIS Koutros, S., Meyer, T. E., Fox, S. D., Issaq, H. J., Veenstra, T. D., Huang, W., Yu, K., Albanes, D., Chu, L. W., Andriole, G., Hoover, R. N., Hsing, A. W., Berndt, S. I. 2013; 34 (10): 2281-2285

    Abstract

    Metabolomic profiling has identified, sarcosine, a derivative of the amino acid glycine, as an important metabolite involved in the etiology or natural history of prostate cancer. We examined the association between serum sarcosine levels and risk of prostate cancer in 1122 cases (813 non-aggressive and 309 aggressive) and 1112 controls in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Sarcosine was quantified using high-throughput liquid chromatography-mass spectrometry. A significantly increased risk of prostate cancer was observed with increasing levels of sarcosine (odds ratio [OR] for the highest quartile of exposure [Q4] versus the lowest quartile [Q1] = 1.30, 95% confidence interval [CI]: 1.02, 1.65; P-trend 0.03). When stratified by disease aggressiveness, we observed a stronger association for non-aggressive cases (OR for Q4 versus Q1 = 1.44, 95% CI: 1.11, 1.88; P-trend 0.006) but no association for aggressive prostate cancer (OR for Q4 versus Q1 = 1.03, 95% CI: 0.73, 1.47; P-trend 0.89). Although not statistically significant, temporal analyses showed a stronger association between sarcosine and prostate cancer for serum collected closer to diagnosis, suggesting that sarcosine may be an early biomarker of disease. Interestingly, the association between sarcosine and prostate cancer risk was stronger among men with diabetes (OR = 2.66, 95% CI: 1.04, 6.84) compared with those without reported diabetes (OR = 1.23, 95% CI: 0.95-1.59, P-interaction = 0.01). This study found that elevated levels of serum sarcosine are associated with an increased prostate cancer risk and evidence to suggest that sarcosine may be an early biomarker for this disease.

    View details for DOI 10.1093/carcin/bgt176

    View details for Web of Science ID 000325486200011

    View details for PubMedID 23698636

    View details for PubMedCentralID PMC3786375

  • Variants in CCK and CCKAR genes to susceptibility to biliary tract cancers and stones: A population-based study in Shanghai, China JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY Xu, H., Hsing, A. W., Vogtmann, E., Chu, L. W., Cheng, J., Gao, J., Tan, Y., Wang, B., Shen, M., Gao, Y. 2013; 28 (9): 1476-1481

    Abstract

    Altered motility of the gallbladder is associated with an increased risk of gallstones and can result in biliary tract cancers. Cholecystokinin (CCK) is an important modulator of gallbladder motility which functions by activating CCK type-A receptor (CCKAR). The aim of this study was to determine whether genetic variants in CCK and CCKAR are associated with the risk of biliary tract cancers and stones.We investigated the associations between nine single nucleotide polymorphisms in CCK and CCKAR in a population-based case-control study, including 439 biliary tract cancer cases (253 gallbladder, 133 extrahepatic bile duct, and 53 ampulla of Vater cancer cases), 429 biliary stone cases, and 447 population controls in Shanghai, China.We found that women with the CCKAR rs1800855 AA genotype had an increased risk of gallbladder cancer (odds ratio = 2.37, 95% confidence interval (CI): 1.36-4.14) compared with subjects with the TT genotype, and remained significant after Bonferroni correction (P = 0.0056). Additionally, female carriers of the CCKAR haplotype C-T-C-T (rs2071011-rs915889-rs3822222-rs1800855) had a reduced risk of gallbladder cancer (odds ratio = 0.61, 95% confidence interval: 0.43-0.86) compared with those with the G-C-C-A haplotype; the association also remained significant after Bonferroni correction.These findings suggest that variants in the CCKAR gene may influence the risk of gallbladder cancer in women. Additional studies are needed to confirm our findings.

    View details for DOI 10.1111/jgh.12278

    View details for Web of Science ID 000323389700010

    View details for PubMedID 23701593

    View details for PubMedCentralID PMC3820582

  • A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nature genetics Monda, K. L., Chen, G. K., Taylor, K. C., Palmer, C., Edwards, T. L., Lange, L. A., Ng, M. C., Adeyemo, A. A., Allison, M. A., Bielak, L. F., Chen, G., Graff, M., Irvin, M. R., Rhie, S. K., Li, G., Liu, Y., Liu, Y., Lu, Y., Nalls, M. A., Sun, Y. V., Wojczynski, M. K., Yanek, L. R., Aldrich, M. C., Ademola, A., Amos, C. I., Bandera, E. V., Bock, C. H., Britton, A., Broeckel, U., Cai, Q., Caporaso, N. E., Carlson, C. S., Carpten, J., Casey, G., Chen, W., Chen, F., Chen, Y. I., Chiang, C. W., Coetzee, G. A., Demerath, E., Deming-Halverson, S. L., Driver, R. W., Dubbert, P., Feitosa, M. F., Feng, Y., Freedman, B. I., Gillanders, E. M., Gottesman, O., Guo, X., Haritunians, T., Harris, T., Harris, C. C., Hennis, A. J., Hernandez, D. G., McNeill, L. H., Howard, T. D., Howard, B. V., Howard, V. J., Johnson, K. C., Kang, S. J., Keating, B. J., Kolb, S., Kuller, L. H., Kutlar, A., Langefeld, C. D., Lettre, G., Lohman, K., Lotay, V., Lyon, H., Manson, J. E., Maixner, W., Meng, Y. A., Monroe, K. R., Morhason-Bello, I., Murphy, A. B., Mychaleckyj, J. C., Nadukuru, R., Nathanson, K. L., Nayak, U., N'Diaye, A., Nemesure, B., Wu, S., Leske, M. C., Neslund-Dudas, C., Neuhouser, M., Nyante, S., Ochs-Balcom, H., Ogunniyi, A., Ogundiran, T. O., Ojengbede, O., Olopade, O. I., Palmer, J. R., Ruiz-Narvaez, E. A., Palmer, N. D., Press, M. F., Rampersaud, E., Rasmussen-Torvik, L. J., Rodriguez-Gil, J. L., Salako, B., Schadt, E. E., Schwartz, A. G., Shriner, D. A., Siscovick, D., Smith, S. B., Wassertheil-Smoller, S., Speliotes, E. K., Spitz, M. R., Sucheston, L., Taylor, H., Tayo, B. O., Tucker, M. A., Van den Berg, D. J., Edwards, D. R., Wang, Z., Wiencke, J. K., Winkler, T. W., Witte, J. S., Wrensch, M., Wu, X., Yang, J. J., Levin, A. M., Young, T. R., Zakai, N. A., Cushman, M., Zanetti, K. A., Zhao, J. H., Zhao, W., Zheng, Y., Zhou, J., Ziegler, R. G., Zmuda, J. M., Fernandes, J. K., Gilkeson, G. S., Kamen, D. L., Hunt, K. J., Spruill, I. J., Ambrosone, C. B., Ambs, S., Arnett, D. K., Atwood, L., Becker, D. M., Berndt, S. I., Bernstein, L., Blot, W. J., Borecki, I. B., Bottinger, E. P., Bowden, D. W., Burke, G., Chanock, S. J., Cooper, R. S., Ding, J., Duggan, D., Evans, M. K., Fox, C., Garvey, W. T., Bradfield, J. P., Hakonarson, H., Grant, S. F., Hsing, A., Chu, L., Hu, J. J., Huo, D., Ingles, S. A., John, E. M., Jordan, J. M., Kabagambe, E. K., Kardia, S. L., Kittles, R. A., Goodman, P. J., Klein, E. A., Kolonel, L. N., Le Marchand, L., Liu, S., McKnight, B., Millikan, R. C., Mosley, T. H., Padhukasahasram, B., Williams, L. K., Patel, S. R., Peters, U., Pettaway, C. A., Peyser, P. A., Psaty, B. M., Redline, S., Rotimi, C. N., Rybicki, B. A., Sale, M. M., Schreiner, P. J., Signorello, L. B., Singleton, A. B., Stanford, J. L., Strom, S. S., Thun, M. J., Vitolins, M., Zheng, W., Moore, J. H., Williams, S. M., Ketkar, S., Zhu, X., Zonderman, A. B., Kooperberg, C., Papanicolaou, G. J., Henderson, B. E., Reiner, A. P., Hirschhorn, J. N., Loos, R. J., North, K. E., Haiman, C. A. 2013; 45 (6): 690-696

    Abstract

    Genome-wide association studies (GWAS) have identified 36 loci associated with body mass index (BMI), predominantly in populations of European ancestry. We conducted a meta-analysis to examine the association of >3.2 million SNPs with BMI in 39,144 men and women of African ancestry and followed up the most significant associations in an additional 32,268 individuals of African ancestry. We identified one new locus at 5q33 (GALNT10, rs7708584, P = 3.4 × 10(-11)) and another at 7p15 when we included data from the GIANT consortium (MIR148A-NFE2L3, rs10261878, P = 1.2 × 10(-10)). We also found suggestive evidence of an association at a third locus at 6q16 in the African-ancestry sample (KLHL32, rs974417, P = 6.9 × 10(-8)). Thirty-two of the 36 previously established BMI variants showed directionally consistent effect estimates in our GWAS (binomial P = 9.7 × 10(-7)), five of which reached genome-wide significance. These findings provide strong support for shared BMI loci across populations, as well as for the utility of studying ancestrally diverse populations.

    View details for DOI 10.1038/ng.2608

    View details for PubMedID 23583978