All Publications


  • Force-Based Neuromodulation. Accounts of chemical research Cooper, L., Malinao, M. G., Hong, G. 2024

    Abstract

    ConspectusTechnologies for neuromodulation have rapidly developed in the past decade with a particular emphasis on creating noninvasive tools with high spatial and temporal precision. The existence of such tools is critical in the advancement of our understanding of neural circuitry and its influence on behavior and neurological disease. Existing technologies have employed various modalities, such as light, electrical, and magnetic fields, to interface with neural activity. While each method offers unique advantages, many struggle with modulating activity with high spatiotemporal precision without the need for invasive tools. One modality of interest for neuromodulation has been the use of mechanical force. Mechanical force encapsulates a broad range of techniques, ranging from mechanical waves delivered via focused ultrasound (FUS) to torque applied to the cell membrane.Mechanical force can be delivered to the tissue in two forms. The first form is the delivery of a mechanical force through focused ultrasound. Energy delivery facilitated by FUS has been the foundation for many neuromodulation techniques, owing to its precision and penetration depth. FUS possesses the potential to penetrate deeply (∼centimeters) into tissue while maintaining relatively precise spatial resolution, although there exists a trade-off between the penetration depth and spatial resolution. FUS may work synergistically with ultrasound-responsive nanotransducers or devices to produce a secondary energy, such as light, heat, or an electric field, in the target region. This layered technology, first enabled by noninvasive FUS, overcomes the need for bulky invasive implants and also often improves the spatiotemporal precision of light, heat, electrical fields, or other techniques alone. Conversely, the second form of mechanical force modulation is the generation of mechanical force from other modalities, such as light or magnetic fields, for neuromodulation via mechanosensitive proteins. This approach localizes the mechanical force at the cellular level, enhancing the precision of the original energy delivery. Direct interaction of mechanical force with tissue presents translational potential in its ability to interface with endogenous mechanosensitive proteins without the need for transgenes.In this Account, we categorize force-mediated neuromodulation into two categories: 1) methods where mechanical force is the primary stimulus and 2) methods where mechanical force is generated as a secondary stimulus in response to other modalities. We summarize the general design principles and current progress of each respective approach. We identify the key advantages of the limitations of each technology, particularly noting features in spatiotemporal precision, the need for transgene delivery, and the potential outlook. Finally, we highlight recent technologies that leverage mechanical force for enhanced spatiotemporal precision and advanced applications.

    View details for DOI 10.1021/acs.accounts.4c00074

    View details for PubMedID 38657038

  • Electropneumotactile Stimulation: Multimodal Haptic Actuators Enabled by a Stretchable Conductive Polymer on Inflatable Pockets ADVANCED MATERIALS TECHNOLOGIES Carpenter, C. W., Malinao, M. G., Rafeedi, T. A., Rodriquez, D., Tan, S., Root, N. B., Skelil, K., Ramirez, J., Polat, B., Root, S. E., Ramachandran, V. S., Lipomi, D. J. 2020; 5 (6)

    Abstract

    This paper describes a type of haptic device that delivers two modes of stimulation simultaneously and at the same locations on the skin. The two modes of stimulation are mechanical (delivered pneumatically by inflatable air pockets embedded within a silicone elastomer) and electrical (delivered by a conductive polymer). The key enabling aspect of this work is the use of a highly plasticized conductive polymer based on poly(3,4-ethylenedioxythiphene) (PEDOT) blended with elastomeric polyurethane (PU). To fabricate the "electropneumotactile" device, the polymeric electrodes are overlaid directly on top of the elastomeric pneumatic actuator pockets. Co-placement of the pneumatic actuators and the electrotactile electrodes is enabled by the stretchability of the PEDOT:OTs/PU blend, allowing the electrotactiles to conform to underlying pneumatic pockets under deformation. The blend of PEDOT and PU has a Young's modulus of ~150 MPa with little degradation in conductivity following repeated inflation of the air pockets. The ability to perceive simultaneous delivery of two sensations to the same location on the skin are supported by experiments using human subjects. These results show that participants can successfully detect the location of pneumatic stimulation and whether electrotactile stimulation is delivered (yes/no) at a rate significantly above chance (mean accuracy = 94%).

    View details for DOI 10.1002/admt.201901119

    View details for Web of Science ID 000530399200001

    View details for PubMedID 32905479

    View details for PubMedCentralID PMC7469953

  • Healable thermoplastic for kinesthetic feedback in wearable haptic devices SENSORS AND ACTUATORS A-PHYSICAL Carpenter, C. W., Tan, S., Keef, C., Skelil, K., Malinao, M., Rodriquez, D., Alkhadra, M. A., Ramirez, J., Lipomi, D. J. 2019; 288: 79-85

    Abstract

    The word "haptics" refers to technologies designed to stimulate the tactile and kinesthetic senses. Kinesthesia-the sense of motion-is triggered by imposing forces upon the joints, tendons, and muscles to recreate the geometry and stiffness of objects, as may be useful in physical therapy or virtual reality. Here, we introduce a form of kinesthetic feedback by manipulating the mechanical properties of spandex impregnated with a thermoplastic polymer. Heating or cooling this textile-thermoplastic composite just above or below its glass transition temperature (T g) dramatically changes its mechanical properties (corresponding to a decrease in storage modulus from 36 MPa to 0.55 MPa). In the form of a glove, the composite can also be healed after inadvertent overextension in its stiffened state by heating it above its T g. When fitted with thermoelectric devices for active heating and cooling, the flexible or stiffened state of a glove can be perceived by human subjects. As an example of a human-machine interface, the glove is used to control a robotic finger. When the robotic finger makes contact with a wall, a signal is sent to thermoelectric devices in the glove to cool (stiffen the finger) and thus provide kinesthetic feedback to the user.

    View details for DOI 10.1016/j.sna.2019.01.032

    View details for Web of Science ID 000463130000011

    View details for PubMedID 31777429

    View details for PubMedCentralID PMC6880936