Massimo Onesto
Ph.D. Student in Neurosciences, admitted Autumn 2020
All Publications
-
Single-cell transcriptomic landscape of the developing human spinal cord.
Nature neuroscience
2023
Abstract
Understanding spinal cord assembly is essential to elucidate how motor behavior is controlled and how disorders arise. The human spinal cord is exquisitely organized, and this complex organization contributes to the diversity and intricacy of motor behavior and sensory processing. But how this complexity arises at the cellular level in the human spinal cord remains unknown. Here we transcriptomically profiled the midgestation human spinal cord with single-cell resolution and discovered remarkable heterogeneity across and within cell types. Glia displayed diversity related to positional identity along the dorso-ventral and rostro-caudal axes, while astrocytes with specialized transcriptional programs mapped into white and gray matter subtypes. Motor neurons clustered at this stage into groups suggestive of alpha and gamma neurons. We also integrated our data with multiple existing datasets of the developing human spinal cord spanning 22 weeks of gestation to investigate the cell diversity over time. Together with mapping of disease-related genes, this transcriptomic mapping of the developing human spinal cord opens new avenues for interrogating the cellular basis of motor control in humans and guides human stem cell-based models of disease.
View details for DOI 10.1038/s41593-023-01311-w
View details for PubMedID 37095394
View details for PubMedCentralID 8353162
-
Familiar growth factors have diverse roles in neural network assembly.
Current opinion in neurobiology
2021; 66: 233–39
Abstract
The assembly of neuronal circuits during development depends on guidance of axonal growth cones by molecular cues deposited in their environment. While a number of families of axon guidance molecules have been identified and reviewed, important and diverse activities of traditional growth factors are emerging. Besides clear and well recognized roles in the regulation of cell division, differentiation and survival, new research shows later phase roles for a number of growth factors in promoting neuronal migration, axon guidance and synapse formation throughout the nervous system.
View details for DOI 10.1016/j.conb.2020.12.016
View details for PubMedID 33477094