
Matthias Kling
Professor of Photon Science and, by courtesy, of Applied Physics
Photon Science Directorate
Bio
Matthias Kling is a Professor of Photon Science and (by courtesy) of Applied Physics at Stanford University and the Director of the Science, Research and Development (SRD) Division at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. Kling received a Diploma in Physics in 1998 and a PhD in Physical Chemistry in 2002 from Goettingen University in Germany. He subsequently was a postdoctoral researcher at the University of California at Berkeley and at AMOLF in Amsterdam, The Netherlands. From 2007 Kling led the Research Group on Attosecond Imaging at the Max Planck Institute of Quantum Optics (MPQ) in Garching, Germany, and was Assistant Professor at Kansas-State University from 2009 until 2013. In 2013, he became Professor of Physics at the Ludwig-Maximilians-Universität (LMU) in Munich in Germany and was appointed as Max Planck Fellow at MPQ in 2019. Kling joined Stanford University in 2021, leading the Research Group on Ultrafast Electronics and Nanophotonics and serving as the Director of the SRD Division at LCLS at SLAC.
Academic Appointments
-
Professor, Photon Science Directorate
-
Professor (By courtesy), Applied Physics
-
Member, Bio-X
-
Member, Stanford PULSE Institute
Administrative Appointments
-
Professor of Photon Science & Applied Physics (by courtesy), Stanford University (2021 - Present)
-
SRD Division Director, LCLS, SLAC (2021 - Present)
-
Max Planck Fellow, Max Planck Institute of Quantum Optics, Germany (2019 - 2023)
-
Professor of Physics, LMU Munich, Germany (2013 - 2021)
-
Assistant Professor of Physics, Kansas-State University (2009 - 2013)
-
Max Planck Group Leader, Max Planck Institute of Quantum Optics, Germany (2007 - 2013)
Honors & Awards
-
APS Fellow, American Physical Society (2019)
-
Max Planck Fellow, Max Planck Society (2019)
-
ERC Starting Grant, European Research Council (2013)
-
Early Career Award, Department of Energy (2012)
-
Heisenberg Fellow, German Research Foundation (2012)
-
Nernst-Haber Bodenstein Prize, German Bunsen Society (2012)
-
Roentgen Prize, Giessen University (2011)
-
Emmy-Noether Fellow, German Research Foundation (2007)
-
Marie-Curie Fellow, European Research Council (2004)
-
Feodor-Lynen Fellow, Alexander von Humboldt foundation (2003)
Professional Education
-
Ph.D., University of Goettingen, Germany, Physical Chemistry (2002)
-
Certificate, Jena University, Germany, Laser Physics (2000)
-
Diploma, University of Goettingen, Germany, Physics (1998)
Current Research and Scholarly Interests
The fastest timescale of electron motion within nanostructures is attoseconds (1 attosecond = 10-18 seconds). We have pioneered the field attosecond nanophotonics and are currently conducting research to extend the state-of-the-art to multi-dimensional spectroscopies, x-ray emission and scattering using intense attosecond XFEL pulses. We aim to explore the dynamics of many-electron effects, including correlation-driven and collective effects. A particularly important open question is the transition from many-body quantum physics to classical dynamics. This will largely impact applications of nanosystems in optoelectronic devices used in ultrafast electronics and computing. As an example, ultrafast plasmonic circuitry can overcome current limitations in resistive electronics and might open an avenue towards quantum computing at ambient temperature.
We also address the question, how aerosolized particles can enable and catalyze light-induced chemical processes. Reaction nanoscopy is a powerful method that is developed in our group for analyzing the surface chemistry on aerosols with nanometer spatial and femtosecond temporal resolution. We aim to advance this technique to solve fundamental questions in astro- and atmospheric chemistry. Among these are the mechanisms of chemical transformations under extreme conditions, where such particles are exposed to high-intensity or high-energy radiation.
We aim to develop, expand, and exploit field-resolved spectroscopies towards higher frequencies in the THz and PHz domains. Opening up these frequency ranges will enable sensitivity to a manyfold of vibrational and electronic transitions in organic electronics and 2D-materials. Field-resolved spectroscopy is a powerful technique that permits addressing the sub-cycle response of a solid to a lightfield. Exploring and controlling many-body excitations and scattering dynamics opens a path for optimized energy conversion in optoelectronic devices. The sub-cycle control of a device builds the basis for lightwave electronics, which may push the speed of computing to its ultimate limit.
We engage in the development of high-average and high-peak power ultrashort light sources. These include optical-parametric chirped pulse amplifiers (OPCPAs) driven by high-power fiber, thin-disk and Innoslab amplifiers. We focus on ultrashort few-cycle pulse generation in the visible and mid-infared spectral region with stable and controllable electric field waveforms. The R&D efforts also include nonlinear tools for pulse characterization. Such capabilities are instrumental in addition to the facility-based light sources in our research on ultrafast nanophotonics, lightwave electronics, and ultrafast x-ray science.
2023-24 Courses
Stanford Advisees
-
Doctoral Dissertation Reader (AC)
Paris Franz, Jun Wang -
Postdoctoral Faculty Sponsor
Alexandra Feinberg, Daniel Jost, Tom Linker, Ilana Porter, Vandana Tiwari -
Doctoral Dissertation Advisor (AC)
Selene She
All Publications
-
49 W carrier-envelope-phase-stable few-cycle 2.1 & mu;m OPCPA at 10 kHz
OPTICS EXPRESS
2023; 31 (15): 24821-24834
Abstract
We demonstrate a mid-infrared optical parametric chirped pulse amplifier (OPCPA), delivering 2.1 µm center wavelength pulses with 20 fs duration and 4.9 mJ energy at 10 kHz repetition rate. This self-seeded system is based on a kW-class Yb:YAG thin-disk amplifier driving a CEP stable short-wavelength-infrared (SWIR) generation and three consecutive OPCPA stages. Our SWIR source achieves an average power of 49 W, while still maintaining excellent phase and average power stability with sub-100 mrad carrier-envelope-phase-noise and 0.8% average power fluctuations. These parameters enable the OPCPA setup to drive attosecond pump probe spectroscopy experiments with photon energies in the water window.
View details for DOI 10.1364/OE.493326
View details for Web of Science ID 001044920400002
View details for PubMedID 37475300
-
Resonance Effect in Brunel Harmonic Generation in Thin Film Organic Semiconductors
ADVANCED OPTICAL MATERIALS
2023
View details for DOI 10.1002/adom.202203070
View details for Web of Science ID 000991603700001
-
Enhanced cutoff energies for direct and rescattered strong-field photoelectron emission of plasmonic nanoparticles
NANOPHOTONICS
2023
View details for DOI 10.1515/nanoph-2023-0120
View details for Web of Science ID 000969260000001
-
Reaction nanoscopy of ion emission from sub-wavelength propanediol droplets
NANOPHOTONICS
2023
View details for DOI 10.1515/nanoph-2022-0714
View details for Web of Science ID 000964452600001
-
Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition
COATINGS
2023; 13 (4)
View details for DOI 10.3390/coatings13040787
View details for Web of Science ID 000977104500001
-
Light-Induced Subnanometric Modulation of a Single-Molecule Electron Source.
Physical review letters
2023; 130 (10): 106204
Abstract
Single-molecule electron sources of fullerenes driven via constant electric fields, approximately 1nm in size, produce peculiar emission patterns, such as a cross or a two-leaf pattern. By illuminating the electron sources with femtosecond light pulses, we discovered that largely modulated emission patterns appeared from single molecules. Our simulations revealed that emission patterns, which have been an intractable question for over seven decades, represent single-molecule molecular orbitals. Furthermore, the observed modulations originated from variations of single-molecule molecular orbitals, practically achieving the subnanometric optical modulation of an electron source.
View details for DOI 10.1103/PhysRevLett.130.106204
View details for PubMedID 36962055
-
Ion microscopy with evolutionary-algorithm-based autofocusing
ENGINEERING RESEARCH EXPRESS
2023; 5 (1)
View details for DOI 10.1088/2631-8695/acb419
View details for Web of Science ID 000971730900001
-
Broadband Photoconductive Sampling in Gallium Phosphide
ADVANCED OPTICAL MATERIALS
2023
View details for DOI 10.1002/adom.202202994
View details for Web of Science ID 000939665800001
-
Ultrafast quantum dynamics driven by the strong space-charge field of a relativistic electron beam
OPTICA
2023; 10 (1): 1-10
View details for DOI 10.1364/OPTICA.471773
View details for Web of Science ID 000927471100001
-
Strong-field physics with nanospheres
ADVANCES IN PHYSICS-X
2022; 7 (1)
View details for DOI 10.1080/23746149.2021.2010595
View details for Web of Science ID 000784409000001
-
Relaxation dynamics in excited helium nanodroplets probed with high resolution, time-resolved photoelectron spectroscopy
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
2022: 28844-28852
Abstract
Superfluid helium nanodroplets are often considered as transparent and chemically inert nanometer-sized cryo-matrices for high-resolution or time-resolved spectroscopy of embedded molecules and clusters. On the other hand, when the helium nanodroplets are resonantly excited with XUV radiation, a multitude of ultrafast processes are initiated, such as relaxation into metastable states, formation of nanoscopic bubbles or excimers, and autoionization channels generating low-energy free electrons. Here, we discuss the full spectrum of ultrafast relaxation processes observed when helium nanodroplets are electronically excited. In particular, we perform an in-depth study of the relaxation dynamics occurring in the lowest 1s2s and 1s2p droplet bands using high resolution, time-resolved photoelectron spectroscopy. The simplified excitation scheme and improved resolution allow us to identify the relaxation into metastable triplet and excimer states even when exciting below the droplets' autoionization threshold, unobserved in previous studies.
View details for DOI 10.1039/d2cp03335f
View details for Web of Science ID 000890034400001
View details for PubMedID 36422471
-
Strong-Field Control of Plasmonic Properties in Core-Shell Nanoparticles
ACS PHOTONICS
2022
View details for DOI 10.1021/acsphotonics.2c00663
View details for Web of Science ID 000878995500001
-
Complementary dispersive mirror pair produced in one coating run based on desired non-uniformity
OPTICS EXPRESS
2022; 30 (18): 32074-32083
View details for DOI 10.1364/OE.467664
View details for Web of Science ID 000850229100045
-
Spatiotemporal sampling of near-petahertz vortex fields
OPTICA
2022; 9 (7): 755-761
View details for DOI 10.1364/OPTICA.459612
View details for Web of Science ID 000822022700013
-
Imaging elliptically polarized infrared near-fields on nanoparticles by strong-field dissociation of functional surface groups
EUROPEAN PHYSICAL JOURNAL D
2022; 76 (6)
View details for DOI 10.1140/epjd/s10053-022-00430-6
View details for Web of Science ID 000817283600001
-
All-optical nanoscopic spatial control of molecular reaction yields on nanoparticles
OPTICA
2022; 9 (5): 551-560
View details for DOI 10.1364/OPTICA.453915
View details for Web of Science ID 000799613700015
-
Fifth-order nonlinear optical response of Alq(3) thin films
RESULTS IN PHYSICS
2022; 37
View details for DOI 10.1016/j.rinp.2022.105513
View details for Web of Science ID 000798985800008
-
Few-femtosecond resolved imaging of laser-driven nanoplasma expansion
NEW JOURNAL OF PHYSICS
2022; 24 (4)
View details for DOI 10.1088/1367-2630/ac5e86
View details for Web of Science ID 000783683900001
-
Electro-optic characterization of synthesized infrared-visible light fields
NATURE COMMUNICATIONS
2022; 13 (1): 1111
Abstract
The measurement and control of light field oscillations enable the study of ultrafast phenomena on sub-cycle time scales. Electro-optic sampling (EOS) is a powerful field characterization approach, in terms of both sensitivity and dynamic range, but it has not reached beyond infrared frequencies. Here, we show the synthesis of a sub-cycle infrared-visible pulse and subsequent complete electric field characterization using EOS. The sampled bandwidth spans from 700 nm to 2700 nm (428 to 110 THz). Tailored electric-field waveforms are generated with a two-channel field synthesizer in the infrared-visible range, with a full-width at half-maximum duration as short as 3.8 fs at a central wavelength of 1.7 µm (176 THz). EOS detection of the complete bandwidth of these waveforms extends it into the visible spectral range. To demonstrate the power of our approach, we use the sub-cycle transients to inject carriers in a thin quartz sample for nonlinear photoconductive field sampling with sub-femtosecond resolution.
View details for DOI 10.1038/s41467-022-28699-6
View details for Web of Science ID 000763605200010
View details for PubMedID 35236857
View details for PubMedCentralID PMC8891359
-
The emergence of macroscopic currents in photoconductive sampling of optical fields.
Nature communications
2022; 13 (1): 962
Abstract
Photoconductive field sampling enables petahertz-domain optoelectronic applications that advance our understanding of light-matter interaction. Despite the growing importance of ultrafast photoconductive measurements, a rigorous model for connecting the microscopic electron dynamics to the macroscopic external signal is lacking. This has caused conflicting interpretations about the origin of macroscopic currents. Here, we present systematic experimental studies on the signal formation in gas-phase photoconductive sampling. Our theoretical model, based on the Ramo-Shockley-theorem, overcomes the previously introduced artificial separation into dipole and current contributions. Extensive numerical particle-in-cell-type simulations permit a quantitative comparison with experimental results and help to identify the roles of electron-neutral scattering and mean-field charge interactions. The results show that the heuristic models utilized so far are valid only in a limited range and are affected by macroscopic effects. Our approach can aid in the design of more sensitive and more efficient photoconductive devices.
View details for DOI 10.1038/s41467-022-28412-7
View details for PubMedID 35181662
-
Attosecond coherent electron motion in Auger-Meitner decay.
Science (New York, N.Y.)
1800: eabj2096
Abstract
[Figure: see text].
View details for DOI 10.1126/science.abj2096
View details for PubMedID 34990213
-
Efficient nonlinear compression of a thin-disk oscillator to 8.5 fs at 55 W average power
OPTICS LETTERS
2021; 46 (21): 5304-5307
Abstract
We demonstrate an efficient hybrid-scheme for nonlinear pulse compression of high-power thin-disk oscillator pulses to the sub-10 fs regime. The output of a home-built, 16 MHz, 84 W, 220 fs Yb:YAG thin-disk oscillator at 1030 nm is first compressed to 17 fs in two nonlinear multipass cells. In a third stage, based on multiple thin sapphire plates, further compression to 8.5 fs with 55 W output power and an overall optical efficiency of 65% is achieved. Ultrabroadband mid-infrared pulses covering the spectral range 2.4-8µm were generated from these compressed pulses by intra-pulse difference frequency generation.
View details for DOI 10.1364/OL.440303
View details for Web of Science ID 000713723300004
View details for PubMedID 34724461
-
Onset of charge interaction in strong-field photoemission from nanometric needle tips
NANOPHOTONICS
2021; 10 (14): 3769-3775
View details for DOI 10.1515/nanoph-2021-0276
View details for Web of Science ID 000712886600020
-
Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser
NATURE PHOTONICS
2020; 14 (1): 30-+
View details for DOI 10.1038/s41566-019-0549-5
View details for Web of Science ID 000504727600007
-
Attosecond transient absorption spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy.
Physical chemistry chemical physics : PCCP
2019
Abstract
The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.
View details for DOI 10.1039/c9cp03951a
View details for PubMedID 31793561
-
Generation and Characterization of Attosecond Pulses from an X-ray Free-electron Laser
IEEE. 2019
View details for Web of Science ID 000482226301273
-
Roadmap on plasmonics
JOURNAL OF OPTICS
2018; 20 (4)
View details for DOI 10.1088/2040-8986/aaa114
View details for Web of Science ID 000447428100001