Honors & Awards


  • Weldon G. Brown Fellowship, Brown Science Foundation
  • EDGE Fellowship, Stanford VPGE

Education & Certifications


  • B.S., University of Chicago, Chemistry, Biological Chemistry (2022)

Lab Affiliations


All Publications


  • Water-in-Salt: Fast Dynamics, Structure, Thermodynamics, and Bulk Properties. The journal of physical chemistry. B Kacenauskaite, L., Van Wyck, S. J., Moncada Cohen, M., Fayer, M. D. 2023

    Abstract

    We present concentration-dependent dynamics of highly concentrated LiBr solutions and LiCl temperature-dependent dynamics for two high concentrations and compare the results to those of prior LiCl concentration-dependent data. The dynamical data are obtained using ultrafast optical heterodyne-detected optical Kerr effect (OHD-OKE). The OHD-OKE decays are composed of two pairs of biexponentials, i.e., tetra-exponentials. The fastest decay (t1) is the same as pure water's at all concentrations within error, while the second component (t2) slows slightly with concentration. The slower components (t3 and t4), not present in pure water, slow substantially, and their contributions to the decays increase significantly with increasing concentration, similar to LiCl solutions. Simulations of LiCl solutions from the literature show that the slow components arise from large ion/water clusters, while the fast components are from ion/water structures that are not part of large clusters. Temperature-dependent studies (15-95 °C) of two high LiCl concentrations show that decreasing the temperature is equivalent to increasing the room temperature concentration. The LiBr and LiCl concentration dependences and the two LiCl concentrations' temperature dependences all have bulk viscosities that are linearly dependent on τcslow, the correlation time of the slow dynamics (weighted averages of t3 and t4). Remarkably, all four viscosity vs 1/τCslow plots fall on the same line. Application of transition state theory to the temperature-dependent data yields the activation enthalpies and entropies for the dynamics of the large ion/water clusters, which underpin the bulk viscosity.

    View details for DOI 10.1021/acs.jpcb.3c07711

    View details for PubMedID 38118403

  • Infrared compatible rapid mixer to probe millisecond chemical kinetics REVIEW OF SCIENTIFIC INSTRUMENTS Itani, R. C., Cohen, M., Tokmakoff, A. 2023; 94 (3)

    View details for DOI 10.1063/5.0121817

    View details for Web of Science ID 000943256000006