Stanford Advisors


All Publications


  • Titanium:sapphire-on-insulator integrated lasers and amplifiers. Nature Yang, J., Van Gasse, K., Lukin, D. M., Guidry, M. A., Ahn, G. H., White, A. D., Vučković, J. 2024; 630 (8018): 853-859

    Abstract

    Titanium:sapphire (Ti:sapphire) lasers have been essential for advancing fundamental research and technological applications, including the development of the optical frequency comb1, two-photon microscopy2 and experimental quantum optics3,4. Ti:sapphire lasers are unmatched in bandwidth and tuning range, yet their use is restricted because of their large size, cost and need for high optical pump powers5. Here we demonstrate a monocrystalline titanium:sapphire-on-insulator (Ti:SaOI) photonics platform that enables dramatic miniaturization, cost reduction and scalability of Ti:sapphire technology. First, through the fabrication of low-loss whispering-gallery-mode resonators, we realize a Ti:sapphire laser operating with an ultralow, sub-milliwatt lasing threshold. Then, through orders-of-magnitude improvement in mode confinement in Ti:SaOI waveguides, we realize an integrated solid-state (that is, non-semiconductor) optical amplifier operating below 1 μm. We demonstrate unprecedented distortion-free amplification of picosecond pulses to peak powers reaching 1.0 kW. Finally, we demonstrate a tunable integrated Ti:sapphire laser, which can be pumped with low-cost, miniature, off-the-shelf green laser diodes. This opens the doors to new modalities of Ti:sapphire lasers, such as massively scalable Ti:sapphire laser-array systems for several applications. As a proof-of-concept demonstration, we use a Ti:SaOI laser array as the sole optical control for a cavity quantum electrodynamics experiment with artificial atoms in silicon carbide6. This work is a key step towards the democratization of Ti:sapphire technology through a three-orders-of-magnitude reduction in cost and footprint and introduces solid-state broadband amplification of sub-micron wavelength light.

    View details for DOI 10.1038/s41586-024-07457-2

    View details for PubMedID 38926612

    View details for PubMedCentralID 5734860

  • Inverse-designed silicon carbide quantum and nonlinear photonics. Light, science & applications Yang, J., Guidry, M. A., Lukin, D. M., Yang, K., Vučković, J. 2023; 12 (1): 201

    Abstract

    Inverse design has revolutionized the field of photonics, enabling automated development of complex structures and geometries with unique functionalities unmatched by classical design. However, the use of inverse design in nonlinear photonics has been limited. In this work, we demonstrate quantum and classical nonlinear light generation in silicon carbide nanophotonic inverse-designed Fabry-Pérot cavities. We achieve ultra-low reflector losses while targeting a pre-specified anomalous dispersion to reach optical parametric oscillation. By controlling dispersion through inverse design, we target a second-order phase-matching condition to realize second- and third-order nonlinear light generation in our devices, thereby extending stimulated parametric processes into the visible spectrum. This first realization of computational optimization for nonlinear light generation highlights the power of inverse design for nonlinear optics, in particular when combined with highly nonlinear materials such as silicon carbide.

    View details for DOI 10.1038/s41377-023-01253-9

    View details for PubMedID 37607918

    View details for PubMedCentralID PMC10444789

  • Multimode squeezing in soliton crystal microcombs OPTICA Guidry, M. A., Lukin, D. M., Yang, K., Vuckovic, J. 2023; 10 (6): 694-701
  • Inverse Designed Couplers for Use in Gallium Arsenide Photonics ACS PHOTONICS Carfagno, H., Guidry, M., Yang, J., McCabe, L., Zide, J. O., Vuckovic, J., Doty, M. F. 2023
  • Two-Emitter Multimode Cavity Quantum Electrodynamics in Thin-Film Silicon Carbide Photonics PHYSICAL REVIEW X Lukin, D. M., Guidry, M. A., Yang, J., Ghezellou, M., Mishra, S., Abe, H., Ohshima, T., Ul-Hassan, J., Vuckovic, J. 2023; 13 (1)
  • Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nature communications Yang, K. Y., Shirpurkar, C., White, A. D., Zang, J., Chang, L., Ashtiani, F., Guidry, M. A., Lukin, D. M., Pericherla, S. V., Yang, J., Kwon, H., Lu, J., Ahn, G. H., Van Gasse, K., Jin, Y., Yu, S. P., Briles, T. C., Stone, J. R., Carlson, D. R., Song, H., Zou, K., Zhou, H., Pang, K., Hao, H., Trask, L., Li, M., Netherton, A., Rechtman, L., Stone, J. S., Skarda, J. L., Su, L., Vercruysse, D., MacLean, J. W., Aghaeimeibodi, S., Li, M. J., Miller, D. A., Marom, D. M., Willner, A. E., Bowers, J. E., Papp, S. B., Delfyett, P. J., Aflatouni, F., Vučković, J. 2022; 13 (1): 7862

    Abstract

    The use of optical interconnects has burgeoned as a promising technology that can address the limits of data transfer for future high-performance silicon chips. Recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated multi-dimensional communication scheme that combines wavelength- and mode- multiplexing on a silicon photonic circuit. Using foundry-compatible photonic inverse design and spectrally flattened microcombs, we demonstrate a 1.12-Tb/s natively error-free data transmission throughout a silicon nanophotonic waveguide. Furthermore, we implement inverse-designed surface-normal couplers to enable multimode optical transmission between separate silicon chips throughout a multimode-matched fibre. All the inverse-designed devices comply with the process design rules for standard silicon photonic foundries. Our approach is inherently scalable to a multiplicative enhancement over the state of the art silicon photonic transmitters.

    View details for DOI 10.1038/s41467-022-35446-4

    View details for PubMedID 36543782

    View details for PubMedCentralID PMC9772188

  • Quantum optics of soliton microcombs NATURE PHOTONICS Guidry, M. A., Lukin, D. M., Yang, K., Trivedi, R., Vuckovic, J. 2021
  • Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects PRX QUANTUM Lukin, D. M., Guidry, M. A., Vuckovic, J. 2020; 1 (2)
  • Optical parametric oscillation in silicon carbide nanophotonics OPTICA Guidry, M. A., Yang, K., Lukin, D. M., Markosyan, A., Yang, J., Fejer, M. M., Vuckovic, J. 2020; 7 (9): 1139–42
  • Spectrally reconfigurable quantum emitters enabled by optimized fast modulation NPJ QUANTUM INFORMATION Lukin, D. M., White, A. D., Trivedi, R., Guidry, M. A., Morioka, N., Babin, C., Soykal, O. O., Ul-Hassan, J., Son, N., Ohshima, T., Vasireddy, P. K., Nasr, M. H., Sun, S., MacLean, J. W., Dory, C., Nanni, E. A., Wrachtrup, J., Kaiser, F., Vuckovic, J. 2020; 6 (1)
  • 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics NATURE PHOTONICS Lukin, D. M., Dory, C., Guidry, M. A., Yang, K., Mishra, S. D., Trivedi, R., Radulaski, M., Sun, S., Vercruysse, D., Ahn, G., Vuckovic, J. 2020; 14: 330-334
  • 4H-SiC-on-Insulator Platform for Quantum Photonics Lukin, D., Dory, C., Radulaski, M., Sun, S., Mishra, S., Guidry, M., Vercruysse, D., Vuckovic, J., IEEE IEEE. 2019