Lab Affiliations


All Publications


  • Sex-specific variation in species interactions matters in ecological communities. Trends in ecology & evolution Gissi, E., Goodman, M. C., Elahi, R., McDevitt-Irwin, J. M., Arnoldi, N. S., Arafeh-Dalmau, N., Knight, C. J., OlguĂ­n-Jacobson, C., Palmisciano, M., Tillman, C. M., De Leo, G. A., Micheli, F. 2024

    Abstract

    Understanding how natural communities and ecosystems are structured and respond to anthropogenic pressures in a rapidly changing world is key to successful management and conservation. A fundamental but often overlooked biological characteristic of organisms is sex. Sex-based responses are often considered when conducting studies at organismal and population levels, but are rarely investigated in community ecology. Focusing on kelp forests as a model system, and through a review of other marine and terrestrial ecosystems, we found evidence of widespread sex-based variation in species interactions. Sex-based variation in species interactions is expected to affect ecosystem structure and functioning via multiple trophic and nontrophic pathways. Understanding the drivers and consequences of sex-based variation in species interactions can inform more effective management and restoration.

    View details for DOI 10.1016/j.tree.2024.07.006

    View details for PubMedID 39107207

  • Wave exposure shapes reef community composition and recovery trajectories at a remote coral atoll CORAL REEFS Lange, I. D., Benkwitt, C. E., McDevitt-Irwin, J. M., Tietjen, K. L., Taylor, B., Chinkin, M., Gunn, R. L., Palmisciano, M., Steyaert, M., Wilson, B., East, H. K., Turner, J., Graham, N. J., Perry, C. T. 2021
  • Spatial and temporal variability in macroalgal blooms in a eutrophied coastal estuary HARMFUL ALGAE Thornber, C. S., Guidone, M., Deacutis, C., Green, L., Ramsay, C. N., Palmisciano, M. 2017; 68: 82-96

    Abstract

    All three macroalgal clades (Chlorophyta, Rhodophyta, and Phaeophyceae) contain bloom-forming species. Macroalgal blooms occur worldwide and have negative consequences for coastal habitats and economies. Narragansett Bay (NB), Rhode Island, USA, is a medium sized estuary that is heavily influenced by anthropogenic activities and has been plagued by macroalgal blooms for over a century. Over the past decade, significant investment has upgraded wastewater treatment from secondary treatment to water-quality based limits (i.e. tertiary treatment) in an effort to control coastal eutrophication in this system. The goal of this study was to improve the understanding of multi-year macroalgal bloom dynamics through intensive aerial and ground surveys conducted monthly to bi-monthly during low tides in May-October 2006-2013 in NB. Aerial surveys provided a rapid characterization of macroalgal densities across a large area, while ground surveys provided high resolution measurements of macroalgal identity, percent cover, and biomass. Macroalgal blooms in NB are dominated by Ulva and Gracilaria spp. regardless of year or month, although all three clades of macroalgae were documented. Chlorophyta cover and nutrient concentrations were highest in the middle and upper bay. Rhodophyta cover was highest in the middle and lower bay, while drifting Phaeophyceae cover was patchy. Macroalgal blooms of >1000g fresh mass (gfm)/m2 (max=3510gfm/m2) in the intertidal zone and >3000gfm/m3 (max=8555gfm/m3) in the subtidal zone were observed within a heavily impacted embayment (Greenwich Bay). Macroalgal percent cover (intertidal), biomass (subtidal), and diversity varied significantly between year, month-group, site, and even within sites, with the highest species diversity at sites outside of Greenwich Bay. Total intertidal macroalgal percent cover, as well as subtidal Ulva biomass, were positively correlated with temperature. Dissolved inorganic nitrogen concentrations were correlated with the total biomass of macroalgae and the subtidal biomass of Gracilaria spp. but not the biomass of Ulva spp. Despite seasonal reductions in the nutrient output of wastewater treatment facilities emptying into upper Narragansett Bay in recent years, macroalgal blooms still persist. Continued long-term monitoring of water quality, macroalgal blooms, and ecological indicators is essential to understand the changes in macroalgal bloom dynamics that occur after nutrient reductions from management efforts.

    View details for DOI 10.1016/j.hal.2017.07.011

    View details for Web of Science ID 000412958300007

    View details for PubMedID 28962992