All Publications

  • Effect of lattice excitations on transient near-edge x-ray absorption spectroscopy PHYSICAL REVIEW B Rothenbach, N., Gruner, M. E., Ollefs, K., Schmitz-Antoniak, C., Salamon, S., Zhou, P., Li, R., Mo, M., Park, S., Shen, X., Weathersby, S., Yang, J., Wang, X. J., Sipr, O., Ebert, H., Sokolowski-Tinten, K., Pentcheva, R., Bovensiepen, U., Eschenlohr, A., Wende, H. 2021; 104 (14)
  • Imaging the short-lived hydroxyl-hydronium pair in ionized liquid water. Science (New York, N.Y.) Lin, M., Singh, N., Liang, S., Mo, M., Nunes, J. P., Ledbetter, K., Yang, J., Kozina, M., Weathersby, S., Shen, X., Cordones, A. A., Wolf, T. J., Pemmaraju, C. D., Ihme, M., Wang, X. J. 2021; 374 (6563): 92-95


    [Figure: see text].

    View details for DOI 10.1126/science.abg3091

    View details for PubMedID 34591617

  • Observation of a highly conductive warm dense state of water with ultrafast pump-probe free-electron-laser measurements MATTER AND RADIATION AT EXTREMES Chen, Z., Na, X., Curry, C. B., Liang, S., French, M., Descamps, A., DePonte, D. P., Koralek, J. D., Kim, J. B., Lebovitz, S., Nakatsutsumi, M., Ofori-Okai, B. K., Redmer, R., Roedel, C., Schorner, M., Skruszewicz, S., Sperling, P., Toleikis, S., Mo, M. Z., Glenzer, S. H. 2021; 6 (5)

    View details for DOI 10.1063/5.0043726

    View details for Web of Science ID 000681018600001

  • Fast attenuation of high-frequency acoustic waves in bicontinuous nanoporous gold APPLIED PHYSICS LETTERS Zheng, Q., Tian, Y., Shen, X., Sokolowski-Tinten, K., Li, R. K., Chen, Z., Mo, M. Z., Wang, Z. L., Liu, P., Fujita, T., Weathersby, S. P., Yang, J., Wang, X. J., Chen, M. W. 2021; 119 (6)

    View details for DOI 10.1063/5.0055391

    View details for Web of Science ID 000683519300015

  • Ultrafast visualization of phase transitions in nonequilibrium warm dense matter MRS BULLETIN Mo, M., Chen, Z., Glenzer, S. 2021
  • Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature Yang, J., Dettori, R., Nunes, J. P., List, N. H., Biasin, E., Centurion, M., Chen, Z., Cordones, A. A., Deponte, D. P., Heinz, T. F., Kozina, M. E., Ledbetter, K., Lin, M., Lindenberg, A. M., Mo, M., Nilsson, A., Shen, X., Wolf, T. J., Donadio, D., Gaffney, K. J., Martinez, T. J., Wang, X. 2021; 596 (7873): 531-535


    Water is one of the most important, yet least understood, liquids in nature. Many anomalous properties of liquid water originate from its well-connected hydrogen bond network1, including unusually efficient vibrational energy redistribution and relaxation2. An accurate description of the ultrafast vibrational motion of water molecules is essential for understanding the nature of hydrogen bonds and many solution-phase chemical reactions. Most existing knowledge of vibrational relaxation in water is built upon ultrafast spectroscopy experiments2-7. However, these experiments cannot directly resolve the motion of the atomic positions and require difficult translation of spectral dynamics into hydrogen bond dynamics. Here, we measure the ultrafast structural response to the excitation of the OH stretching vibration in liquid water with femtosecond temporal and atomic spatial resolution using liquid ultrafast electron scattering. We observed a transient hydrogen bond contraction of roughly 0.04A on a timescale of 80 femtoseconds, followed by a thermalization on a timescale of approximately 1 picosecond. Molecular dynamics simulations reveal the need to treat the distribution of the shared proton in the hydrogen bond quantum mechanically to capture the structural dynamics on femtosecond timescales. Our experiment and simulations unveil the intermolecular character of the water vibration preceding the relaxation of the OH stretch.

    View details for DOI 10.1038/s41586-021-03793-9

    View details for PubMedID 34433948

  • Structure retrieval in liquid-phase electron scattering. Physical chemistry chemical physics : PCCP Yang, J., Nunes, J. P., Ledbetter, K., Biasin, E., Centurion, M., Chen, Z., Cordones, A. A., Crissman, C., Deponte, D. P., Glenzer, S. H., Lin, M., Mo, M., Rankine, C. D., Shen, X., Wolf, T. J., Wang, X. 2020


    Electron scattering on liquid samples has been enabled recently by the development of ultrathin liquid sheet technologies. The data treatment of liquid-phase electron scattering has been mostly reliant on methodologies developed for gas electron diffraction, in which theoretical inputs and empirical fittings are often needed to account for the atomic form factor and remove the inelastic scattering background. In this work, we present an alternative data treatment method that is able to retrieve the radial distribution of all the charged particle pairs without the need of either theoretical inputs or empirical fittings. The merits of this new method are illustrated through the retrieval of real-space molecular structure from experimental electron scattering patterns of liquid water, carbon tetrachloride, chloroform, and dichloromethane.

    View details for DOI 10.1039/d0cp06045c

    View details for PubMedID 33367391

  • Synthesis of Macroscopic Single Crystals of Ge2Sb2Te5 via Single-Shot Femtosecond Optical Excitation CRYSTAL GROWTH & DESIGN Zajac, M., Sood, A., Kim, T. R., Mo, M., Kozina, M., Park, S., Shen, X., Guzelturk, B., Lin, M., Yang, J., Weathersby, S., Wang, X., Lindenberg, A. M. 2020; 20 (10): 6660–67
  • Characterization of defect clusters in ion-irradiated tungsten by X-Ray diffuse scattering JOURNAL OF NUCLEAR MATERIALS Sun, P., Wang, Y., Frost, M., Schoenwaelder, C., Levitan, A. L., Mo, M., Chen, Z., Hastings, J. B., Tynan, G. R., Glenzer, S. H., Heimann, P. 2018; 510: 322–30