All Publications


  • Identification of a 5-gene signature panel for the prediction of prostate cancer progression. British journal of cancer Shen, M., García-Marqués, F., Muruganantham, A., Liu, S., White, J. R., Bermudez, A., Rice, M. A., Thompson, K., Chen, C. L., Hung, C. N., Zhang, Z., Huang, T. H., Liss, M. A., Pienta, K. J., Pitteri, S. J., Stoyanova, T. 2024

    Abstract

    Despite nearly 100% 5-year survival for localised prostate cancer, the survival rate for metastatic prostate cancer significantly declines to 32%. Thus, it is crucial to identify molecular indicators that reflect the progression from localised disease to metastatic prostate cancer.To search for molecular indicators associated with prostate cancer metastasis, we performed proteomic analysis of rapid autopsy tissue samples from metastatic prostate cancer (N = 8) and localised prostate cancer (N = 2). Then, we utilised multiple independent, publicly available prostate cancer patient datasets to select candidates that also correlate with worse prostate cancer clinical prognosis.We identified 154 proteins with increased expressions in metastases relative to localised prostate cancer through proteomic analysis. From the subset of these candidates that correlate with prostate cancer recurrence (N = 28) and shorter disease-free survival (N = 37), we identified a 5-gene signature panel with improved performance in predicting worse clinical prognosis relative to individual candidates.Our study presents a new 5-gene signature panel that is associated with worse clinical prognosis and is elevated in prostate cancer metastasis on both protein and mRNA levels. Our 5-gene signature panel represents a potential modality for the prediction of prostate cancer progression towards the onset of metastasis.

    View details for DOI 10.1038/s41416-024-02854-w

    View details for PubMedID 39402324

    View details for PubMedCentralID 9275764

  • ACAA2 is a novel molecular indicator for cancers with neuroendocrine phenotype. British journal of cancer Shen, M., Liu, S., Toland, A., Hsu, E. C., Hartono, A. B., Alabi, B. R., Aslan, M., Nguyen, H. M., Sessions, C. J., Nolley, R., Shi, C., Huang, J., Brooks, J. D., Corey, E., Stoyanova, T. 2023

    Abstract

    Neuroendocrine phenotype is commonly associated with therapy resistance and poor prognoses in small-cell neuroendocrine cancers (SCNCs), such as neuroendocrine prostate cancer (NEPC) and small-cell lung cancer (SCLC). Expression levels of current neuroendocrine markers exhibit high case-by-case variability, so multiple markers are used in combination to identify SCNCs. Here, we report that ACAA2 is elevated in SCNCs and is a potential molecular indicator for SCNCs.ACAA2 expressions in tumour xenografts, tissue microarrays (TMAs), and patient tissues from prostate and lung cancers were analysed via immunohistochemistry. ACAA2 mRNA levels in lung and prostate cancer (PC) patients were assessed in published datasets.ACAA2 protein and mRNA levels were elevated in SCNCs relative to non-SCNCs. Medium/high ACAA2 intensity was observed in 78% of NEPC PDXs samples (N = 27) relative to 33% of adeno-CRPC (N = 86), 2% of localised PC (N = 50), and 0% of benign prostate specimens (N = 101). ACAA2 was also elevated in lung cancer patient tissues with neuroendocrine phenotype. 83% of lung carcinoid tissues (N = 12) and 90% of SCLC tissues (N = 10) exhibited medium/high intensity relative to 40% of lung adenocarcinoma (N = 15).ACAA2 expression is elevated in aggressive SCNCs such as NEPC and SCLC, suggesting it is a potential molecular indicator for SCNCs.

    View details for DOI 10.1038/s41416-023-02448-y

    View details for PubMedID 37798372

    View details for PubMedCentralID 4861069

  • UCHL1 is a potential molecular indicator and therapeutic target for neuroendocrine carcinomas. Cell reports. Medicine Liu, S., Chai, T., Garcia-Marques, F., Yin, Q., Hsu, E. C., Shen, M., Shaw Toland, A. M., Bermudez, A., Hartono, A. B., Massey, C. F., Lee, C. S., Zheng, L., Baron, M., Denning, C. J., Aslan, M., Nguyen, H. M., Nolley, R., Zoubeidi, A., Das, M., Kunder, C. A., Howitt, B. E., Soh, H. T., Weissman, I. L., Liss, M. A., Chin, A. I., Brooks, J. D., Corey, E., Pitteri, S. J., Huang, J., Stoyanova, T. 2024: 101381

    Abstract

    Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.

    View details for DOI 10.1016/j.xcrm.2023.101381

    View details for PubMedID 38244540

  • High expression of Trop2 is associated with aggressive localized prostate cancer and is a candidate urinary biomarker. Scientific reports Liu, S., Hawley, S. J., Kunder, C. A., Hsu, E. C., Shen, M., Westphalen, L., Auman, H., Newcomb, L. F., Lin, D. W., Nelson, P. S., Feng, Z., Tretiakova, M. S., True, L. D., Vakar-Lopez, F., Carroll, P. R., Simko, J., Gleave, M. E., Troyer, D. A., McKenney, J. K., Brooks, J. D., Liss, M. A., Stoyanova, T. 2024; 14 (1): 486

    Abstract

    Distinguishing indolent from clinically significant localized prostate cancer is a major clinical challenge and influences clinical decision-making between treatment and active surveillance. The development of novel predictive biomarkers will help with risk stratification, and clinical decision-making, leading to a decrease in over or under-treatment of patients with prostate cancer. Here, we report that Trop2 is a prognostic tissue biomarker for clinically significant prostate cancer by utilizing the Canary Prostate Cancer Tissue Microarray (CPCTA) cohort composed of over 1100 patients from a multi-institutional study. We demonstrate that elevated Trop2 expression is correlated with worse clinical features including Gleason score, age, and pre-operative PSA levels. More importantly, we demonstrate that elevated Trop2 expression at radical prostatectomy predicts worse overall survival in men undergoing radical prostatectomy. Additionally, we detect shed Trop2 in urine from men with clinically significant prostate cancer. Our study identifies Trop2 as a novel tissue prognostic biomarker and a candidate non-invasive marker for prostate cancer.

    View details for DOI 10.1038/s41598-023-50215-z

    View details for PubMedID 38177207

    View details for PubMedCentralID 7983799

  • ACAA2 is a novel molecular indicator for cancers with neuroendocrine phenotype BRITISH JOURNAL OF CANCER Shen, M., Liu, S., Toland, A., Hsu, E., Hartono, A. B., Alabi, B. R., Aslan, M., Nguyen, H. M., Sessions, C. J., Nolley, R., Shi, C., Huang, J., Brooks, J. D., Corey, E., Stoyanova, T. 2023
  • Metastasis Model to Test the Role of Notch Signaling in Prostate Cancer. Methods in molecular biology (Clifton, N.J.) Liu, S., Hsu, E. C., Shen, M., Aslan, M., Stoyanova, T. 2022; 2472: 221-233

    Abstract

    Distant metastasis is the main cause of death in prostate cancer patients. Notch signaling plays an important role in driving prostate cancer aggressiveness and metastasis. In this chapter, we describe a protocol to measure prostate cancer metastatic colonization, incidences of metastasis, accurately quantify the burden of metastasis, and test the role of NOTCH1 receptor on prostate cancer metastatic colonization and homing to distant sites. The metastasis model presented here is established by intracardiac injection of control human prostate cancer cells and NOTCH1 downregulated cells. The cells are engineered to express both red fluorescent protein (RFP) and luciferase. In this model, whole body bioluminescence imaging, high-resolution, and quantitative fluorescence imaging are utilized for quantitative assessment of metastatic colonization and metastasis burden. Further, histopathology analyses of diverse metastatic organs are performed. This model is a powerful and versatile tool to investigate the mechanisms underlying the function of NOTCH receptors in metastatic colonization in prostate cancer.

    View details for DOI 10.1007/978-1-0716-2201-8_18

    View details for PubMedID 35674904

  • SU086, an inhibitor of HSP90, impairs glycolysis and represents a treatment strategy for advanced prostate cancer. Cell reports. Medicine Rice, M. A., Kumar, V., Tailor, D., Garcia-Marques, F. J., Hsu, E., Liu, S., Bermudez, A., Kanchustambham, V., Shankar, V., Inde, Z., Alabi, B. R., Muruganantham, A., Shen, M., Pandrala, M., Nolley, R., Aslan, M., Ghoochani, A., Agarwal, A., Buckup, M., Kumar, M., Going, C. C., Peehl, D. M., Dixon, S. J., Zare, R. N., Brooks, J. D., Pitteri, S. J., Malhotra, S. V., Stoyanova, T. 2022; 3 (2): 100502

    Abstract

    Among men, prostate cancer is the second leading cause of cancer-associated mortality, with advanced disease remaining a major clinical challenge. We describe a small molecule, SU086, as a therapeutic strategy for advanced prostate cancer. We demonstrate that SU086 inhibits the growth of prostate cancer cells invitro, cell-line and patient-derived xenografts invivo, and exvivo prostate cancer patient specimens. Furthermore, SU086 in combination with standard of care second-generation anti-androgen therapies displays increased impairment of prostate cancer cell and tumor growth invitro and invivo. Cellular thermal shift assay reveals that SU086 binds to heat shock protein 90 (HSP90) and leads to a decrease in HSP90 levels. Proteomic profiling demonstrates that SU086 binds to and decreases HSP90. Metabolomic profiling reveals that SU086 leads to perturbation of glycolysis. Our study identifies SU086 as a treatment for advanced prostate cancer as a single agent or when combined with second-generation anti-androgens.

    View details for DOI 10.1016/j.xcrm.2021.100502

    View details for PubMedID 35243415

  • Mesenchymal stromal cells for the treatment of Alzheimer's disease: Strategies and limitations. Frontiers in molecular neuroscience Regmi, S., Liu, D. D., Shen, M., Kevadiya, B. D., Ganguly, A., Primavera, R., Chetty, S., Yarani, R., Thakor, A. S. 2022; 15: 1011225

    Abstract

    Alzheimer's disease (AD) is a major cause of age-related dementia and is characterized by progressive brain damage that gradually destroys memory and the ability to learn, which ultimately leads to the decline of a patient's ability to perform daily activities. Although some of the pharmacological treatments of AD are available for symptomatic relief, they are not able to limit the progression of AD and have several side effects. Mesenchymal stem/stromal cells (MSCs) could be a potential therapeutic option for treating AD due to their immunomodulatory, anti-inflammatory, regenerative, antioxidant, anti-apoptotic, and neuroprotective effects. MSCs not only secret neuroprotective and anti-inflammatory factors to promote the survival of neurons, but they also transfer functional mitochondria and miRNAs to boost their bioenergetic profile as well as improve microglial clearance of accumulated protein aggregates. This review focuses on different clinical and preclinical studies using MSC as a therapy for treating AD, their outcomes, limitations and the strategies to potentiate their clinical translation.

    View details for DOI 10.3389/fnmol.2022.1011225

    View details for PubMedID 36277497

  • Trop2 regulates prostate cancer growth and metastasis through distinct molecular mechanisms. Stoyanova, T., Hsu, E., Liu, S., Marques, F., Bermudez, A., Aslan, M., Shen, M., Pitteri, S., Brooks, J. D. AMER ASSOC CANCER RESEARCH. 2021
  • A novel oncogene mediated metabolic gene signature predicts breast cancer outcome. Aslan, M., Hsu, E., Marques, F., Bermudez, A., Shen, M., Rice, M. A., Liu, S., West, R., Pitteri, S. J., Gyorffy, B., Stoyanova, T. AMER ASSOC CANCER RESEARCH. 2021
  • The role of Trop2 in prostate cancer: an oncogene, biomarker, and therapeutic target. American journal of clinical and experimental urology Shen, M., Liu, S., Stoyanova, T. 2021; 9 (1): 73-87

    Abstract

    Prostate cancer remains the second leading cause of cancer-associated deaths amongst American men. Trop2, a cell surface glycoprotein, correlates with poor clinical outcome and is highly expressed in metastatic, treatment-resistant prostate cancer. High levels of Trop2 are prognostic for biochemical recurrence. Trop2 regulates tumor growth and metastatic ability of prostate cancer. Moreover, overexpression of Trop2 drives the transdifferentiation to neuroendocrine phenotype in prostate cancer. In addition, Trop2 is overexpressed across epithelial cancers and has emerged as a promising therapeutic target in various solid epithelial cancers. The FDA (Food and Drug Administration) recently approved the use of a Trop2-targeting ADC (antibody-drug conjugate), Sacituzumab Govitecan (IMMU-132), for metastatic, triple-negative breast cancer with at least two prior therapies. Here, we review the role of Trop2 in prostate tumorigenesis and its potential as a promising biomarker and therapeutic target for prostate cancer.

    View details for PubMedID 33816696

    View details for PubMedCentralID PMC8012837

  • The role of Trop2 in prostate cancer: an oncogene, biomarker, and therapeutic target AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY Shen, M., Liu, S., Stoyanova, T. 2021; 9 (1): 73–87
  • Oncogene-mediated metabolic gene signature predicts breast cancer outcome. NPJ breast cancer Aslan, M., Hsu, E. C., Garcia-Marques, F. J., Bermudez, A., Liu, S., Shen, M., West, M., Zhang, C. A., Rice, M. A., Brooks, J. D., West, R., Pitteri, S. J., Győrffy, B., Stoyanova, T. 2021; 7 (1): 141

    Abstract

    Breast cancer remains the second most lethal cancer among women in the United States and triple-negative breast cancer is the most aggressive subtype with limited treatment options. Trop2, a cell membrane glycoprotein, is overexpressed in almost all epithelial cancers. In this study, we demonstrate that Trop2 is overexpressed in triple-negative breast cancer (TNBC), and downregulation of Trop2 delays TNBC cell and tumor growth supporting the oncogenic role of Trop2 in breast cancer. Through proteomic profiling, we discovered a metabolic signature comprised of TALDO1, GPI, LDHA, SHMT2, and ADK proteins that were downregulated in Trop2-depleted breast cancer tumors. The identified oncogene-mediated metabolic gene signature is significantly upregulated in TNBC patients across multiple RNA-expression clinical datasets. Our study further reveals that the metabolic gene signature reliably predicts poor survival of breast cancer patients with early stages of the disease. Taken together, our study identified a new five-gene metabolic signature as an accurate predictor of breast cancer outcome.

    View details for DOI 10.1038/s41523-021-00341-6

    View details for PubMedID 34711841

  • MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer. Scientific reports Hsu, E. C., Shen, M., Aslan, M., Liu, S., Kumar, M., Garcia-Marques, F., Nguyen, H. M., Nolley, R., Pitteri, S. J., Corey, E., Brooks, J. D., Stoyanova, T. 2021; 11 (1): 13305

    Abstract

    Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer that rarely develops de novo in primary tumors and is commonly acquired during the development of treatment resistance. NEPC is characterized by gain of neuroendocrine markers and loss of androgen receptor (AR), making it resistant to current therapeutic strategies targeting the AR signaling axis. Here, we report that MCM2, MCM3, MCM4, and MCM6 (MCM2/3/4/6) are elevated in human NEPC and high levels of MCM2/3/4/6 are associated with liver metastasis and poor survival in prostate cancer patients. MCM2/3/4/6 are four out of six proteins that form a core DNA helicase (MCM2-7) responsible for unwinding DNA forks during DNA replication. Inhibition of MCM2-7 by treatment with ciprofloxacin inhibits NEPC cell proliferation and migration in vitro, significantly delays NEPC tumor xenograft growth, and partially reverses the neuroendocrine phenotype in vivo. Our study reveals the clinical relevance of MCM2/3/4/6 proteins in NEPC and suggests that inhibition of MCM2-7 may represent a new therapeutic strategy for NEPC.

    View details for DOI 10.1038/s41598-021-92552-x

    View details for PubMedID 34172788

  • Discovery of CASP8 as a potential biomarker for high-risk prostate cancer through a high-multiplex immunoassay. Scientific reports Liu, S. n., Garcia-Marques, F. n., Zhang, C. A., Lee, J. J., Nolley, R. n., Shen, M. n., Hsu, E. C., Aslan, M. n., Koul, K. n., Pitteri, S. J., Brooks, J. D., Stoyanova, T. n. 2021; 11 (1): 7612

    Abstract

    Prostate cancer remains the most common non-cutaneous malignancy among men in the United States. To discover potential serum-based biomarkers for high-risk prostate cancer, we performed a high-multiplex immunoassay utilizing patient-matched pre-operative and post-operative serum samples from ten men with high-grade and high-volume prostate cancer. Our study identified six (CASP8, MSLN, FGFBP1, ICOSLG, TIE2 and S100A4) out of 174 proteins that were significantly decreased after radical prostatectomy. High levels of CASP8 were detected in pre-operative serum samples when compared to post-operative serum samples and serum samples from patients with benign prostate hyperplasia (BPH). By immunohistochemistry, CASP8 protein was expressed at higher levels in prostate cancer tissues compared to non-cancerous and BPH tissues. Likewise, CASP8 mRNA expression was significantly upregulated in prostate cancer when compared to benign prostate tissues in four independent clinical datasets. In addition, mRNA levels of CASP8 were higher in patients with recurrent prostate cancer when compared to patients with non-recurrent prostate cancer and high expression of CASP8 was associated with worse disease-free survival and overall survival in renal cancer. Together, our results suggest that CASP8 may potentially serve as a biomarker for high-risk prostate cancer and possibly renal cancer.

    View details for DOI 10.1038/s41598-021-87155-5

    View details for PubMedID 33828176

  • Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proceedings of the National Academy of Sciences of the United States of America Hsu, E. C., Rice, M. A., Bermudez, A. n., Marques, F. J., Aslan, M. n., Liu, S. n., Ghoochani, A. n., Zhang, C. A., Chen, Y. S., Zlitni, A. n., Kumar, S. n., Nolley, R. n., Habte, F. n., Shen, M. n., Koul, K. n., Peehl, D. M., Zoubeidi, A. n., Gambhir, S. S., Kunder, C. A., Pitteri, S. J., Brooks, J. D., Stoyanova, T. n. 2020

    Abstract

    Resistance to androgen deprivation therapy, or castration-resistant prostate cancer (CRPC), is often accompanied by metastasis and is currently the ultimate cause of prostate cancer-associated deaths in men. Recently, secondary hormonal therapies have led to an increase of neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. Here, we identify that high levels of cell surface receptor Trop2 are predictive of recurrence of localized prostate cancer. Moreover, Trop2 is significantly elevated in CRPC and NEPC, drives prostate cancer growth, and induces neuroendocrine phenotype. Overexpression of Trop2 induces tumor growth and metastasis while loss of Trop2 suppresses these abilities in vivo. Trop2-driven NEPC displays a significant up-regulation of PARP1, and PARP inhibitors significantly delay tumor growth and metastatic colonization and reverse neuroendocrine features in Trop2-driven NEPC. Our findings establish Trop2 as a driver and therapeutic target for metastatic prostate cancer with neuroendocrine phenotype and suggest that high Trop2 levels could identify cancers that are sensitive to Trop2-targeting therapies and PARP1 inhibition.

    View details for DOI 10.1073/pnas.1905384117

    View details for PubMedID 31932422

  • Discovery of PTN as a serum-based biomarker of pro-metastatic prostate cancer. British journal of cancer Liu, S. n., Shen, M. n., Hsu, E. C., Zhang, C. A., Garcia-Marques, F. n., Nolley, R. n., Koul, K. n., Rice, M. A., Aslan, M. n., Pitteri, S. J., Massie, C. n., George, A. n., Brooks, J. D., Gnanapragasam, V. J., Stoyanova, T. n. 2020

    Abstract

    Distinguishing clinically significant from indolent prostate cancer (PC) is a major clinical challenge. We utilised targeted protein biomarker discovery approach to identify biomarkers specific for pro-metastatic PC. Serum samples from the cancer-free group; Cambridge Prognostic Group 1 (CPG1, low risk); CPG5 (high risk) and metastatic disease were analysed using Olink Proteomics panels. Tissue validation was performed by immunohistochemistry in a radical prostatectomy cohort (n = 234). We discovered that nine proteins (pleiotrophin (PTN), MK, PVRL4, EPHA2, TFPI-2, hK11, SYND1, ANGPT2, and hK14) were elevated in metastatic PC patients when compared to other groups. PTN levels were increased in serum from men with CPG5 compared to benign and CPG1. High tissue PTN level was an independent predictor of biochemical recurrence and metastatic progression in low- and intermediate-grade disease. These findings suggest that PTN may represent a novel biomarker for the presence of poor prognosis local disease with the potential to metastasise warranting further investigation.

    View details for DOI 10.1038/s41416-020-01200-0

    View details for PubMedID 33288843