I am a postdoctoral scholar at Stanford University, working with Marshall Burke as a part of the ECHO (Environmental Change and Human Outcomes) Lab. My research interest is in environmental and energy policies with a global focus on issues involving air pollution, climate change and energy systems. I use causal inference, machine learning, and atmospheric chemistry modeling to study the sustainability challenges at the intersection of energy, pollution and climate using real-world data.

I received my PhD degree from MIT’s Institute for Data, Systems, and Society on September 2021, advised by Noelle Selin. I also worked closely with my committee members: Valerie Karplus, Cory Zigler and Colette Heald. I received bachelor degrees in environmental sciences and economics from Peking University in Beijing.

Honors & Awards

  • Outstanding Student Presentation Awards (OSPA), American Geophysical Union Fall Meeting (2021)
  • Fellow, Martin Family Society of Fellows for Sustainability (2020)
  • Young Scientists Summer Program, IIASA (2019)

Stanford Advisors

All Publications

  • Antagonism between ambient ozone increase and urbanization-oriented population migration on Chinese cardiopulmonary mortality. Innovation (Cambridge (Mass.)) Sun, H. Z., Zhao, J., Liu, X., Qiu, M., Shen, H., Guillas, S., Giorio, C., Staniaszek, Z., Yu, P., Wan, M. W., Chim, M. M., van Daalen, K. R., Li, Y., Liu, Z., Xia, M., Ke, S., Zhao, H., Wang, H., He, K., Liu, H., Guo, Y., Archibald, A. T. 2023; 4 (6): 100517


    Ever-increasing ambient ozone (O3) pollution in China has been exacerbating cardiopulmonary premature deaths. However, the urban-rural exposure inequity has seldom been explored. Here, we assess population-scale O3 exposure and mortality burdens between 1990 and 2019 based on integrated pollution tracking and epidemiological evidence. We find Chinese population have been suffering from climbing O3 exposure by 4.3 ± 2.8 ppb per decade as a result of rapid urbanization and growing prosperity of socioeconomic activities. Rural residents are broadly exposed to 9.8 ± 4.1 ppb higher ambient O3 than the adjacent urban citizens, and thus urbanization-oriented migration compromises the exposure-associated mortality on total population. Cardiopulmonary excess premature deaths attributable to long-term O3 exposure, 373,500 (95% uncertainty interval [UI]: 240,600-510,900) in 2019, is underestimated in previous studies due to ignorance of cardiovascular causes. Future O3 pollution policy should focus more on rural population who are facing an aggravating threat of mortality risks to ameliorate environmental health injustice.

    View details for DOI 10.1016/j.xinn.2023.100517

    View details for PubMedID 37822762

    View details for PubMedCentralID PMC10562756

  • Unraveling complex causal processes that affect sustainability requires more integration between empirical and modeling approaches. Proceedings of the National Academy of Sciences of the United States of America Schlüter, M., Brelsford, C., Ferraro, P. J., Orach, K., Qiu, M., Smith, M. D. 2023; 120 (41): e2215676120


    Scientists seek to understand the causal processes that generate sustainability problems and determine effective solutions. Yet, causal inquiry in nature-society systems is hampered by conceptual and methodological challenges that arise from nature-society interdependencies and the complex dynamics they create. Here, we demonstrate how sustainability scientists can address these challenges and make more robust causal claims through better integration between empirical analyses and process- or agent-based modeling. To illustrate how these different epistemological traditions can be integrated, we present four studies of air pollution regulation, natural resource management, and the spread of COVID-19. The studies show how integration can improve empirical estimates of causal effects, inform future research designs and data collection, enhance understanding of the complex dynamics that underlie observed temporal patterns, and elucidate causal mechanisms and the contexts in which they operate. These advances in causal understanding can help sustainability scientists develop better theories of phenomena where social and ecological processes are dynamically intertwined and prior causal knowledge and data are limited. The improved causal understanding also enhances governance by helping scientists and practitioners choose among potential interventions, decide when and how the timing of an intervention matters, and anticipate unexpected outcomes. Methodological integration, however, requires skills and efforts of all involved to learn how members of the respective other tradition think and analyze nature-society systems.

    View details for DOI 10.1073/pnas.2215676120

    View details for PubMedID 37782803

  • The contribution of wildfire to PM2.5 trends in the USA. Nature Burke, M., Childs, M. L., de la Cuesta, B., Qiu, M., Li, J., Gould, C. F., Heft-Neal, S., Wara, M. 2023


    Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1-4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 μm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.

    View details for DOI 10.1038/s41586-023-06522-6

    View details for PubMedID 37730996

    View details for PubMedCentralID 3521092

  • Air quality related equity implications of U.S. decarbonization policy. Nature communications Picciano, P., Qiu, M., Eastham, S. D., Yuan, M., Reilly, J., Selin, N. E. 2023; 14 (1): 5543


    Climate policies that target greenhouse gas emissions can improve air quality by reducing co-emitted air pollutant emissions. However, the extent to which climate policy could contribute to the targets of reducing existing pollution disparities across different populations remains largely unknown. We quantify potential air pollution exposure reductions under U.S. federal carbon policy, considering implications of resulting health benefits for exposure disparities across U.S. racial/ethnic groups. We focus on policy cases that achieve reductions of 40-60% in 2030 economy-wide carbon dioxide (CO2) emissions, when compared with 2005 emissions. The 50% CO2 reduction policy case reduces average fine particulate matter (PM2.5) exposure across racial/ethnic groups, with greatest benefit for non-Hispanic Black (-0.44 μg/m3) and white populations (-0.37 μg/m3). The average exposure disparity for racial/ethnic minorities rises from 12.4% to 13.1%. Applying an optimization approach to multiple emissions reduction scenarios, we find that no alternate combination of reductions from different CO2 sources would substantially mitigate exposure disparities. Results suggest that CO2-based strategies for this range of reductions are insufficient for fully mitigating PM2.5 exposure disparities between white and racial/ethnic minority populations; addressing disparities may require larger-scale structural changes.

    View details for DOI 10.1038/s41467-023-41131-x

    View details for PubMedID 37726275

    View details for PubMedCentralID PMC10509219

  • Drought impacts on the electricity system, emissions, and air quality in the western United States. Proceedings of the National Academy of Sciences of the United States of America Qiu, M., Ratledge, N., Azevedo, I. M., Diffenbaugh, N. S., Burke, M. 2023; 120 (28): e2300395120


    The western United States has experienced severe drought in recent decades, and climate models project increased drought risk in the future. This increased drying could have important implications for the region's interconnected, hydropower-dependent electricity systems. Using power-plant level generation and emissions data from 2001 to 2021, we quantify the impacts of drought on the operation of fossil fuel plants and the associated impacts on greenhouse gas (GHG) emissions, air quality, and human health. We find that under extreme drought, electricity generation from individual fossil fuel plants can increase up to 65% relative to average conditions, mainly due to the need to substitute for reduced hydropower. Over 54% of this drought-induced generation is transboundary, with drought in one electricity region leading to net imports of electricity and thus increased pollutant emissions from power plants in other regions. These drought-induced emission increases have detectable impacts on local air quality, as measured by proximate pollution monitors. We estimate that the monetized costs of excess mortality and GHG emissions from drought-induced fossil generation are 1.2 to 2.5x the reported direct economic costs from lost hydro production and increased demand. Combining climate model estimates of future drying with stylized energy-transition scenarios suggests that these drought-induced impacts are likely to remain large even under aggressive renewables expansion, suggesting that more ambitious and targeted measures are needed to mitigate the emissions and health burden from the electricity sector during drought.

    View details for DOI 10.1073/pnas.2300395120

    View details for PubMedID 37410866

  • Impacts of wind power on air quality, premature mortality, and exposure disparities in the United States. Science advances Qiu, M., Zigler, C. M., Selin, N. E. 2022; 8 (48): eabn8762


    Understanding impacts of renewable energy on air quality and associated human exposures is essential for informing future policy. We estimate the impacts of U.S. wind power on air quality and pollution exposure disparities using hourly data from 2011 to 2017 and detailed atmospheric chemistry modeling. Wind power associated with renewable portfolio standards in 2014 resulted in $2.0 billion in health benefits from improved air quality. A total of 29% and 32% of these health benefits accrued to racial/ethnic minority and low-income populations respectively, below a 2021 target by the Biden administration that 40% of the overall benefits of future federal investments flow to disadvantaged communities. Wind power worsened exposure disparities among racial and income groups in some states but improved them in others. Health benefits could be up to $8.4 billion if displacement of fossil fuel generators prioritized those with higher health damages. However, strategies that maximize total health benefits would not mitigate pollution disparities, suggesting that more targeted measures are needed.

    View details for DOI 10.1126/sciadv.abn8762

    View details for PubMedID 36459553

  • Daily Local-Level Estimates of Ambient Wildfire Smoke PM2.5 for the Contiguous US. Environmental science & technology Childs, M. L., Li, J., Wen, J., Heft-Neal, S., Driscoll, A., Wang, S., Gould, C. F., Qiu, M., Burney, J., Burke, M. 2022


    Smoke from wildfires is a growing health risk across the US. Understanding the spatial and temporal patterns of such exposure and its population health impacts requires separating smoke-driven pollutants from non-smoke pollutants and a long time series to quantify patterns and measure health impacts. We develop a parsimonious and accurate machine learning model of daily wildfire-driven PM2.5 concentrations using a combination of ground, satellite, and reanalysis data sources that are easy to update. We apply our model across the contiguous US from 2006 to 2020, generating daily estimates of smoke PM2.5 over a 10 km-by-10 km grid and use these data to characterize levels and trends in smoke PM2.5. Smoke contributions to daily PM2.5 concentrations have increased by up to 5 mug/m3 in the Western US over the last decade, reversing decades of policy-driven improvements in overall air quality, with concentrations growing fastest for higher income populations and predominantly Hispanic populations. The number of people in locations with at least 1 day of smoke PM2.5 above 100 mug/m3 per year has increased 27-fold over the last decade, including nearly 25 million people in 2020 alone. Our data set can bolster efforts to comprehensively understand the drivers and societal impacts of trends and extremes in wildfire smoke.

    View details for DOI 10.1021/acs.est.2c02934

    View details for PubMedID 36134580

  • Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions ATMOSPHERIC CHEMISTRY AND PHYSICS Qiu, M., Zigler, C., Selin, N. E. 2022; 22 (16): 10551-10566
  • Using snapshot measurements to identify high-emitting vehicles ENVIRONMENTAL RESEARCH LETTERS Qiu, M., Borken-Kleefeld, J. 2022; 17 (4)
  • Improving Evaluation of Energy Policies with Multiple Goals: Comparing Ex Ante and Ex Post Approaches ENVIRONMENTAL SCIENCE & TECHNOLOGY Qiu, M., Weng, Y., Cao, J., Selin, N. E., Karplus, V. J. 2020; 54 (24): 15584-15593


    Sustainability policies are often motivated by the potential to achieve multiple goals, such as simultaneously mitigating the climate change and air quality impacts of energy use. Ex ante analysis is used prospectively to inform policy decisions by estimating a policy's impact on multiple objectives. In contrast, ex post analysis of impacts that may have multiple causes can retrospectively evaluate the effectiveness of policies. Ex ante analyses are rarely compared with ex post evaluations of the same policy. These comparisons can assess the realism of assumptions in ex ante methods and reveal opportunities for improving prospective analyses. We illustrate the benefits of such a comparison by examining a case of two energy policies in China. Using ex post analysis, we estimate the impacts of two policies, one that targets energy intensity and another that imposes quantitative targets on SO2 emissions, on energy use and pollution outcomes in two major energy-intensive industrial sectors (cement, iron and steel) in China. We find that the ex post effects of the energy intensity policy on both energy and pollution outcomes are very limited on average, while the effects of the SO2 emissions policy are large. Compared with ex ante analysis, ex post estimates of benefits of the energy intensity policy are on average smaller, and differ by location in both sign and magnitude. Accounting for firm-level heterogeneity in production processes and policy responses, as well as the use of empirically grounded counterfactual baselines, can improve the realism of ex ante analysis and thus provide a more reliable basis for policy design.

    View details for DOI 10.1021/acs.est.0c01381

    View details for Web of Science ID 000600100400003

    View details for PubMedID 33263386

  • The contribution of the Beijing, Tianjin and Hebei region's iron and steel industry to local air pollution in winter ENVIRONMENTAL POLLUTION Yang, H., Tao, W., Liu, Y., Qiu, M., Liu, J., Jiang, K., Yi, K., Xiao, Y., Tao, S. 2019; 245: 1095-1106


    The Beijing, Tianjin and Hebei region (BTH) in China is a highly populated area that has recently experienced frequent haze episodes in winter. With high production capacities, the iron and steel industry (ISI) has long been a key source of air pollutants in BTH and is thus considered responsible for the degradation of local air quality. Here, we conducted a cross-disciplinary research combining the Weather Research and Forecasting with Chemistry (WRF/Chem) model, the multiregional input-output model (MRIO) and the health assessment model to explore the impacts of the ISI on air pollution in the BTH region in January 2012. Our results show large increases in air pollution due to direct ISI emissions, with up to a 90 μg/m3 monthly average of fine particulate matter (PM2.5) and sulfur dioxide (SO2) in eastern Tangshan and western Handan. In addition to direct emissions, the ISI has induced large quantities of indirect emissions from upstream sectors (e.g., the electricity and transportation sectors), leading to PM2.5, SO2 and NOx increases of 2-10 μg/m3 in BTH. Considering the direct and indirect emissions, we estimated that 275 (233-313) PM2.5-related mortalities occurred in January, and approximately 42% of these premature deaths occurred in Tangshan. A high rate of premature deaths also occurred in urban Beijing due to its high population density. Revealing the great health burden caused by the ISI, our results underscore the necessity for the Chinese government to reduce air pollutant emissions from the ISI and its upstream industries in BTH.

    View details for DOI 10.1016/j.envpol.2018.11.088

    View details for Web of Science ID 000457511900117

    View details for PubMedID 30682744