Boards, Advisory Committees, Professional Organizations

  • Member, Stanford Biology Postdoc Committee (2022 - Present)
  • Member, Stanford Biology Diversity, Equity, Inclusion and Belonging Committee (2023 - Present)

Professional Education

  • Ph.D., Cornell University, Applied and Engineering Physics (2021)

Stanford Advisors

All Publications

  • Whole-brain optical access in a small adult vertebrate with two- and three-photon microscopy ISCIENCE Akbari, N., Tatarsky, R. L., Kolkman, K. E., Fetcho, J. R., Bass, A. H., Xu, C. 2022; 25 (10): 105191


    Although optical microscopy has allowed scientists to study the entire brain in early developmental stages, access to the brains of live, adult vertebrates has been limited. Danionella, a genus of miniature, transparent fish closely related to zebrafish has been introduced as a neuroscience model to study the adult vertebrate brain. However, the extent of optically accessible depth in these animals has not been quantitatively characterized. Here, we show that both two- and three-photon microscopy can access the entire depth and rostral-caudal extent of the adult wildtype Danionella dracula brain without any modifications to the animal other than mechanical stabilization. Three-photon microscopy provides higher signal-to-background ratio and optical sectioning of fluorescently labeled vasculature through the deepest part of the brain, the hypothalamus. Hence, we use multiphoton microscopy to penetrate the entire adult brain within the geometry of this genus' head structures and without the need for pigment removal.

    View details for DOI 10.1016/j.isci.2022.105191

    View details for Web of Science ID 000869487400006

    View details for PubMedID 36248737

    View details for PubMedCentralID PMC9557827